cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180247 Prime Brier numbers: primes p such that for all k >= 1 the numbers p*2^k + 1 and p*2^k - 1 are composite.

Original entry on oeis.org

10439679896374780276373, 21444598169181578466233, 105404490005793363299729, 178328409866851219182953, 239365215362656954573813, 378418904967987321998467, 422280395899865397194393, 474362792344501650476113, 490393518369132405769309
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 19 2010

Keywords

Comments

WARNING: These are just the smallest examples known - there may be smaller ones. Even the first term is uncertain. - N. J. A. Sloane, Jun 20 2017
There are no prime Brier numbers below 10^10. - Arkadiusz Wesolowski, Jan 12 2011
It is a conjecture that every such number has more than 11 digits. In 2011 I have calculated that for any prime p < 10^11 there is a k such that either p*2^k + 1 or p*2^k - 1 has all its prime factors greater than 1321. - Arkadiusz Wesolowski, Feb 03 2016
The first term was found by Dan Ismailescu and Peter Seho Park and the next two by Christophe Clavier (see below). See also A076335. - N. J. A. Sloane, Jan 03 2014
a(4)-a(9) computed in 2017 by the author.

Crossrefs

Extensions

Entry revised by N. J. A. Sloane, Jan 03 2014
Entry revised by Arkadiusz Wesolowski, May 29 2017