A180247 Prime Brier numbers: primes p such that for all k >= 1 the numbers p*2^k + 1 and p*2^k - 1 are composite.
10439679896374780276373, 21444598169181578466233, 105404490005793363299729, 178328409866851219182953, 239365215362656954573813, 378418904967987321998467, 422280395899865397194393, 474362792344501650476113, 490393518369132405769309
Offset: 1
Keywords
Links
- D. Baczkowski, J. Eitner, C. E. Finch, B. Suminski, and M. Kozek, Polygonal, Sierpinski, and Riesel numbers, Journal of Integer Sequences, 2015 Vol 18. #15.8.1.
- Chris Caldwell, The Prime Glossary, Riesel number
- Chris Caldwell, The Prime Glossary, Sierpinski number
- Christophe Clavier, 14 new Brier numbers
- Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
- P. Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math. 2 (1950), pp. 113-123.
- Yves Gallot, A search for some small Brier numbers, 2000.
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 6992565235279559197457863
- Dan Ismailescu and Peter Seho Park, On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences, Journal of Integer Sequences, 16 (2013), #13.9.8.
- Joe McLean, Brier Numbers [Cached copy]
- Carlos Rivera, Problem 52. ±p ± 2^n, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Brier Number
Crossrefs
Extensions
Entry revised by N. J. A. Sloane, Jan 03 2014
Entry revised by Arkadiusz Wesolowski, May 29 2017
Comments