A180283 Number of arrangements of n indistinguishable balls in n boxes with the maximum number of balls in any box equal to 3.
3, 12, 50, 195, 735, 2716, 9912, 35850, 128865, 461175, 1645215, 5855941, 20810153, 73870748, 262029364, 929031504, 3293120337, 11672207262, 41373395052, 146674116501, 520093043437, 1844704839175, 6544970763175, 23229252652125
Offset: 3
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 3..1795 (n=3..59 from R. H. Hardin)
Crossrefs
Column 3 of A180281.
Programs
-
Maple
f:= proc(m,n) option remember; if m > 3*n or m < 3 then return 0 fi; g(m-3,n-1) + add(procname(m-i,n-1),i=0..2) end proc: g:= proc(m,n) option remember; if m > 3*n then return 0 fi; add(procname(m-i,n-1), i=0..min(m,3)) end proc: g(0,0):= 1: seq(f(n,n),n=3..30); # Robert Israel, May 03 2018
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i == 0, 0, Sum[b[n-j, i-1, k], {j, 0, Min[n, k]}]]]; a[n_] := b[n, n, 3] - b[n, n, 2]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Aug 28 2022, after Alois P. Heinz in A180281 *)