cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180314 Decimal expansion of the torsional rigidity constant for a right isosceles triangular shaft.

Original entry on oeis.org

0, 2, 6, 0, 8, 9, 6, 5, 1, 7, 1, 1, 5, 1, 2, 9, 5, 1, 0, 7, 8, 1, 9, 7, 9, 3, 5, 9, 2, 8, 9, 3, 5, 5, 5, 1, 3, 9, 9, 0, 7, 3, 5, 4, 7, 8, 3, 6, 5, 7, 4, 3, 9, 8, 5, 9, 2, 7, 0, 8, 5, 1, 7, 7, 5, 3, 7, 9, 0, 7, 5, 3, 7, 9, 0, 1, 4, 6, 2, 2, 9, 4, 6, 0, 9, 4, 8, 9, 1, 7, 5
Offset: 0

Views

Author

Eric W. Weisstein, Aug 27 2010

Keywords

Comments

No closed form is apparently known.

Examples

			0.026089651711512...
		

Programs

  • Maple
    Digits := 130 ; x := 31*Zeta(5)/32 ; for l from 1 to 70 do x := x+2* hypergeom([1/2,1/2,1/2,1/2,1/2,1],[3/2,3/2,3/2,3/2,3/2],exp(-2*Pi*l))/exp(Pi*l) ; x := evalf(x) ; y := evalf(-16*x/Pi^5+1/12) ; print(y) ; end do: # R. J. Mathar, Aug 31 2010
  • Mathematica
    digits = 130; x = N[(31*Zeta[5])/32, digits]; For[k = 1, k <= 70, k++, x = x + (2*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2, 1/2, 1}, {3/2, 3/2, 3/2, 3/2, 3/2}, E^(-2*Pi*k)])/E^(Pi*k); y = 1/12 - (16*x)/Pi^5]; Join[{0}, RealDigits[y][[1]]][[1 ;; 91]] (* Jean-François Alcover, Oct 25 2012, translated from R. J. Mathar's Maple program *)

Formula

1/12 - (16*Sum_{n >= 1}(coth(((-1 + 2*n)*Pi)/2)/(-1 + 2*n)^5))/Pi^5.

Extensions

More digits from R. J. Mathar, Aug 31 2010