A180322 a(n) = AR(n) is the total number of aperiodic k-reverses of n.
1, 1, 3, 6, 15, 21, 49, 72, 126, 195, 341, 486, 819, 1225, 1845, 2880, 4335, 6552, 9709, 14850, 21315, 33077, 47081, 72360, 102300, 158067, 220752, 341334, 475107, 732735, 1015777, 1566720, 2161599, 3333615, 4587135, 7062552, 9699291, 14922733, 20444697
Offset: 1
Keywords
References
- John P. McSorley: Counting k-compositions with palindromic and related structures. Preprint, 2010.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
a[n_] := n*Sum[MoebiusMu[n/d]*If[OddQ[d], 2, 3]*2^Quotient[d-1, 2], {d, Divisors[n]}]/2; Array[a, 40] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
PARI
a(n) = n * sumdiv(n, d, moebius(n/d) * if(d%2,2,3) * 2^((d-1)\2)) / 2; \\ Andrew Howroyd, Oct 07 2017
Formula
a(n) = n * A056493(n) / 2. - Andrew Howroyd, Oct 07 2017
Extensions
Terms a(11) and beyond from Andrew Howroyd, Oct 07 2017
Comments