A180336 Positive numbers l of the form l = A007913(4*k*m^3 - k^4), where 1 <= k <= 5*l, 1 <= m <= 5*l.
2, 3, 5, 6, 11, 15, 23, 31, 35, 47, 51, 59, 86, 106, 107, 109, 110, 129, 143, 155, 167, 174, 202, 203, 215, 230, 246, 255, 283, 307, 314, 318, 327, 341, 358, 362, 383, 419, 426, 430, 431, 433, 439, 449, 451, 499, 503, 509, 526, 527, 533, 557, 602, 606, 635, 643
Offset: 1
Keywords
Examples
We have 2=A007913(4*k*m^3-k^4) for k=2,m=3. Therefore a(1)=2; furthermore, 3=A007913(4*k*m^3-k^4) for k=m=1. Therefore a(2)=3.
Programs
-
Mathematica
squareFreePart[n_] := Times @@ (#[[1]] ^ Mod[ #[[2]], 2] & /@ FactorInteger@n); fQ[n_] := If[b = 0; SquareFreeQ@n, Block[{k = 1, m}, While[k < 5 n + 1, m = -5 n; While[m < 5 n + 1, a = 4 k*m^3 - k^4; If[a > 0, a = squareFreePart@ a, a = 0]; If[a == n, b = a; Print[{a, k, m}]; Goto@ fini, 0]; m++ ]; k++ ]]; Label@ fini; b == n, False]; k = 1; lst = {}; While[k < 300, If[ fQ@k, AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Aug 29 2010 *)
Formula
Extensions
Missing term 35 added and a(14)-a(30) from Robert G. Wilson v, Aug 29 2010
a(31)-a(63) from Robert G. Wilson v, Sep 04 2010
Comments