cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180336 Positive numbers l of the form l = A007913(4*k*m^3 - k^4), where 1 <= k <= 5*l, 1 <= m <= 5*l.

Original entry on oeis.org

2, 3, 5, 6, 11, 15, 23, 31, 35, 47, 51, 59, 86, 106, 107, 109, 110, 129, 143, 155, 167, 174, 202, 203, 215, 230, 246, 255, 283, 307, 314, 318, 327, 341, 358, 362, 383, 419, 426, 430, 431, 433, 439, 449, 451, 499, 503, 509, 526, 527, 533, 557, 602, 606, 635, 643
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2010, Aug 29 2010

Keywords

Comments

The equation x^3 + y^3 + z^3 = 0 is solvable in numbers of the form N + M*sqrt(-a(n)), where M and N are integers. Moreover, it is solvable in numbers of the form N + M*sqrt(-l), where l>0 has the form l = A007913(4*k*m^3 - k^4), where k,m >= 1 (without restrictions k,m <= 5*l). But in this more general case there could be unknown numbers l having this form; this circumstance does not allow construction of the full sequence of such l. Therefore we restrict ourselves by the condition k,m <= 5*l. Note that testing l with respect to this condition is rather simple by sorting all values of k,m <= l. One can prove that, at least, in case the Fermat numbers (A000215) are squarefree, the sequence is infinite. Conjecture (necessity of the form of l): If the equation x^3 + y^3 + z^3 = 0 is solvable in numbers of the form N + M*sqrt(-l) with integer N,M, then there exist positive integers k,m such that l = A007913(4*k*m^3 - k^4).

Examples

			We have 2=A007913(4*k*m^3-k^4) for k=2,m=3. Therefore a(1)=2; furthermore, 3=A007913(4*k*m^3-k^4) for k=m=1. Therefore a(2)=3.
		

Crossrefs

Programs

  • Mathematica
    squareFreePart[n_] := Times @@ (#[[1]] ^ Mod[ #[[2]], 2] & /@ FactorInteger@n);
    fQ[n_] := If[b = 0; SquareFreeQ@n, Block[{k = 1, m}, While[k < 5 n + 1, m = -5 n; While[m < 5 n + 1, a = 4 k*m^3 - k^4; If[a > 0, a = squareFreePart@ a, a = 0]; If[a == n, b = a; Print[{a, k, m}]; Goto@ fini, 0]; m++ ]; k++ ]]; Label@ fini; b == n, False];
    k = 1; lst = {}; While[k < 300, If[ fQ@k, AppendTo[lst, k]]; k++ ]; lst
    (* Robert G. Wilson v, Aug 29 2010 *)

Formula

Let a(n)=A007913(4*k*m^3-k^4). Put h=sqrt(A008833(4*k*m^3-k^4)). Then identity A^3+B^3+C^3=0 is valid for A=2*m^6-k^3*m^3-k^6+k*(k^3+5*m^3)*h*sqrt(-a(n)); B=3*m*(k^3-m^3)*(k^2-h*sqrt(-a(n))); C=k^6-8*k^3*m^3-2*m^6-k*(k^3-4*m^3)*h*sqrt(-a(n)).

Extensions

Missing term 35 added and a(14)-a(30) from Robert G. Wilson v, Aug 29 2010
a(31)-a(63) from Robert G. Wilson v, Sep 04 2010