A180342 a(n) = the smallest number k such that the smallest prime factor of k^2 + 1 equals A002144(n).
2, 34, 4, 46, 6, 50, 76, 194, 100, 144, 366, 10, 730, 324, 374, 254, 286, 266, 886, 274, 14, 794, 610, 546, 16, 456, 494, 334, 724, 964, 520, 526, 834, 664, 1596, 504, 3510, 20, 2720, 1234, 1120, 516, 566, 874, 810, 756, 1134, 2110, 1224, 24, 670, 726
Offset: 1
Keywords
Examples
a(1) = 2 because 2^2 + 1 = 5 = A002144(1) ; a(2) = 34 because 34^2 + 1= 13*89 = A002144(2) * 89 ; a(3) = 4 because 4^2 + 1 = 17 = A002144(3) ; a(4) = 46 because 46^2 + 1 = 29*73 = A002144(4) * 73.
Programs
-
Maple
with(numtheory):T:=array(1..200):k:=1:for p from 1 to 1000 do: if type(p,prime)=true and irem(p,4)=1 then T[k]:=p:k:=k+1:else fi:od:for q from 1 to k do:z:=T[q]:ind:=0:for n from 1 to 10000 while(ind=0) do: x:=n^2+1:y:=factorset(x):if z=y[1] then ind:=1:printf(`%d, `,n):else fi:od: od:
Comments