cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180401 Stirling-like sequence obtained from bipartite 0-1 tableaux.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 4, 1, 0, 36, 33, 10, 1, 0, 576, 480, 148, 20, 1, 0, 14400, 10960, 3281, 483, 35, 1, 0, 518400, 362880, 103824, 15552, 1288, 56, 1, 0, 25401600, 16465680, 4479336, 663633, 57916, 2982, 84, 1, 0, 1625702400, 981872640, 253732096, 36690816, 3252624, 181312, 6216, 120, 1
Offset: 1

Views

Author

Ken Joffaniel M Gonzales, Sep 02 2010, Sep 27 2010

Keywords

Comments

Gives the number of ways to construct pairs of permutations of an n-element set into k cycles such that the sum of the minima of the i-th cycle of the first permutation and the (k-i+1)-th cycle of the second permutation is n+1.

Examples

			For n=6, C(6,0)=0, C(6,1)=0, C(6,2)=1, C(6,3)=32, C(6,4)=67, C(6,5)=20, C(6,6)=1
		

Crossrefs

Programs

  • R
    ## Runs on R 2.7.1
    ## Here, beta=r in recurrences
    cnk<-function(n,k,beta=0){
    alpha=0
    as<-function(j){j}
    bs<-function(j){j}
    form.seq<-function(n,fcn){ss<-NULL;for(i in 0:n){ss<-c(ss,fcn(i))};ss}
    seq.a<-form.seq(n+alpha+1,as)
    seq.b<-form.seq(n+beta+1,bs)
    v<-function(i){i}
    w<-function(i){i}
    if(n>k){
    Atab<-combn(1:n-1,n-k)
    Btab<-n-1-Atab+beta
    Atab<-Atab+alpha
    px<-NULL
    for(i in 1:ncol(Atab)){
    partial<-NULL
    for(j in 1:nrow(Atab)){
    partial<-c(partial,(v(seq.a[Atab[j,i]+1])*w(seq.b[Btab[j,i]+1])))
    } # for(j in 1:nrow(Atab))
    px<-c(px,prod(partial))
    }# for(i in 1:ncol(Atab))
    } # if(n>k)
    if(n>k) x<-sum(px)
    if(n==k) x=1
    if(n
    				

Formula

G.f.: sum_{all r=>0} C(n,k) x^r = prod_{all v+w=n,0<=v,w<=n-1} (x+vw)
Symm. f: C(n,k)=sum_{all 0 <=i_1
(i_1*(n-1)-i_1)*(i_2*(n-1)-i_2)*...*(i_{n-k}*(n-1)-i_{n-k})
Recurrences: Let C(n,k;r)=sum_{all 0 <=i_1
(i_1*(r+(n-1)-i_1))*(i_2*(r+(n-1)-i_2))*...*(i_{n-k}*(r+(n-1)-i_{n-k})). Then,
C(n,k)=C(n-1,k-1,1)+(n)C(n-1,k,1)