cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180413 Total number of possible knight moves on an n X n X n chessboard, if the knight is placed anywhere.

Original entry on oeis.org

0, 144, 576, 1440, 2880, 5040, 8064, 12096, 17280, 23760, 31680, 41184, 52416, 65520, 80640, 97920, 117504, 139536, 164160, 191520, 221760, 255024, 291456, 331200, 374400, 421200, 471744, 526176, 584640, 647280, 714240, 785664, 861696
Offset: 1

Views

Author

Graziano Aglietti (mg5055(AT)mclink.it), Sep 02 2010

Keywords

Comments

The maximum number of move in tridimensional chessboard is 24, 8 for every dimension. In a vertex the number is smaller.
Binomial transform of [144, 432, 432, 144, 0, 0, 0, ...] = (144, 576, 1440, ...). - Gary W. Adamson, Sep 03 2010

Crossrefs

Programs

  • Mathematica
    Table[24n(n^2-1),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,144,576,1440},40] (* Harvey P. Dale, Feb 13 2013 *)
  • PARI
    a(n)=24*n*(n^2-1) \\ Charles R Greathouse IV, Nov 03 2014

Formula

a(n) = 24*n*(n^2-1).
G.f.: 144*x^2/(1-x)^4. - Colin Barker, Mar 17 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=0, a(2)=144, a(3)=576, a(4)=1440. - Harvey P. Dale, Feb 13 2013
E.g.f.: 24 * exp(x) * x^2 * (3 + x). - Vaclav Kotesovec, Feb 15 2015