A180413 Total number of possible knight moves on an n X n X n chessboard, if the knight is placed anywhere.
0, 144, 576, 1440, 2880, 5040, 8064, 12096, 17280, 23760, 31680, 41184, 52416, 65520, 80640, 97920, 117504, 139536, 164160, 191520, 221760, 255024, 291456, 331200, 374400, 421200, 471744, 526176, 584640, 647280, 714240, 785664, 861696
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
Table[24n(n^2-1),{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,144,576,1440},40] (* Harvey P. Dale, Feb 13 2013 *)
-
PARI
a(n)=24*n*(n^2-1) \\ Charles R Greathouse IV, Nov 03 2014
Formula
a(n) = 24*n*(n^2-1).
G.f.: 144*x^2/(1-x)^4. - Colin Barker, Mar 17 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=0, a(2)=144, a(3)=576, a(4)=1440. - Harvey P. Dale, Feb 13 2013
E.g.f.: 24 * exp(x) * x^2 * (3 + x). - Vaclav Kotesovec, Feb 15 2015
Comments