A180424 "ARE(n,k)" triangle read by rows. ARE(n,k) is the number of aperiodic k-reverses of n up to cyclic equivalence.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 1, 2, 1, 0, 1, 3, 3, 3, 3, 1, 0, 1, 3, 3, 4, 3, 3, 1, 0, 1, 4, 3, 6, 6, 3, 4, 1, 0, 1, 4, 4, 8, 5, 8, 4, 4, 1, 0, 1, 5, 5, 10, 10, 10, 10, 5, 5, 1, 0, 1, 5, 4, 12, 10, 17, 10, 12, 4, 5, 1, 0
Offset: 1
Examples
The triangle begins 1 1 0 1 1 0 1 1 1 0 1 2 2 1 0 1 2 1 2 1 0 1 3 3 3 3 1 0 1 3 3 4 3 3 1 0 1 4 3 6 6 3 4 1 0 1 4 4 8 5 8 4 4 1 0 For example, row 8 is 1 3 3 4 3 3 1 0. We have ARE(8,3)=3 because there are 9 aperiodic 3-reverses of 8 in the 3 classes {116,611,161}, {224,422,242}, and {233,323,332}, and so there are ARE(8,3)=3 aperiodic 3-reverses of 8 up to cyclic equivalence. We have ARE(8,6)=3 because there are 3 aperiodic 6-reverses of 8 up to cyclic equivalence. The representatives of the 3 classes are 111113, 111122, and 111212.
References
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[GCD[n, k], MoebiusMu[#]*Binomial[Floor[((n/#) - Boole[OddQ[k/#]])/2], Floor[k/(2 #)]] &], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021 *)
-
PARI
\\ here RE(n,k) is A119963(n,k). RE(n,k) = binomial((n-k%2)\2, k\2); T(n,k) = sumdiv(gcd(n,k), d, moebius(d)*RE(n/d,k/d)); for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Oct 07 2017
Formula
ARE(n,k) = Sum_{d|gcd(n,k)} mu(d) * A119963(n/d,k/d). - Andrew Howroyd, Oct 07 2017
Extensions
Terms a(56) and beyond from Andrew Howroyd, Oct 07 2017
Comments