cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049415 Number of squares (of positive integers) with n digits.

Original entry on oeis.org

3, 6, 22, 68, 217, 683, 2163, 6837, 21623, 68377, 216228, 683772, 2162278, 6837722, 21622777, 68377223, 216227767, 683772233, 2162277661, 6837722339, 21622776602, 68377223398, 216227766017, 683772233983, 2162277660169
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

a(n) + A180426(n) + A180429(n) + A180347(n) = A052268(n).
Lim_{n->infinity} a(2n)/10^n = 1 - 1/sqrt(10);
lim_{n->infinity} a(2n-1)/10^n = 1/sqrt(10) - 1/10. - Robert G. Wilson v, Aug 29 2012

Examples

			22 squares (100=10^2, 121=11^2, ...., 961=31^2) have 3 digits, hence a(3)=22.
		

Crossrefs

A049415(n) = A017936(n+1) - A017936(n) = A049416(n+1) - A049416(n).
Cf. A062940.

Programs

  • Magma
    [Ceiling(Sqrt(10^n))-Ceiling(Sqrt(10^(n-1))) : n in [1..30]]; // Vincenzo Librandi, Oct 01 2011
  • Mathematica
    f[n_] := Ceiling[Sqrt[10^n - 1]] - Ceiling[Sqrt[10^(n - 1)]]; f[1] = 3; Array[f, 24] (* Robert G. Wilson v, Aug 29 2012 *)

Formula

a(n) = ceiling(sqrt(10^n)) - ceiling(sqrt(10^(n-1))).
From Jon E. Schoenfield, Nov 30 2019: (Start)
a(2n) = floor(10^n * (1 - 1/sqrt(10))), so each even-indexed term a(2n) is given by the first n digits (after the decimal point) of 1 - 1/sqrt(10) = 0.68377223398316...;
a(2n-1) = ceiling(10^n * (1/sqrt(10) - 1/10)), so each odd-indexed term a(2n-1) is given by the first n digits (after the decimal point) of 1/sqrt(10) - 1/10 = 0.21622776601683..., plus 1. (End)

Extensions

More terms from Dean Hickerson, Jul 10 2001

A180347 The number of n-digit numbers requiring 4 nonzero squares in their representation as sum of squares.

Original entry on oeis.org

1, 14, 150, 1500, 14999, 150000, 1499999, 15000000, 149999998, 1500000001, 14999999999, 149999999999, 1500000000001, 14999999999999, 149999999999999, 1500000000000001, 14999999999999998, 149999999999999999, 1500000000000000003, 14999999999999999996
Offset: 1

Views

Author

Martin Renner, Jan 18 2011

Keywords

Comments

A049415(n) + A180426(n) + A180429(n) + a(n) = A052268(n).

Crossrefs

Formula

a(n) = A167615(n)-A167615(n-1).

A180429 The number of n-digit numbers requiring 3 nonzero squares in their representation as sum of squares.

Original entry on oeis.org

2, 40, 463, 5081, 53722, 557687, 5730883, 58527612, 595228791, 6035604901, 61067111413, 616833883887, 6222429697992, 62704089037652, 631334954674157, 6352077572091621
Offset: 1

Views

Author

Martin Renner, Jan 19 2011

Keywords

Comments

A049415(n) + A180426(n) + a(n) + A180347(n) = A052268(n)

Crossrefs

Formula

a(n) = A180425(n)-A180425(n-1) for n>1.

Extensions

a(6) from Lars Blomberg, Jun 29 2011
a(7)-a(10) from Donovan Johnson, Jul 01 2011
a(10) corrected and a(11)-a(16) added by Hiroaki Yamanouchi, Aug 30 2014
Showing 1-3 of 3 results.