A180471 Irregular triangle in which row n has all primes q such that prime(n)*q is a base-2 Fermat pseudoprime.
31, 257, 73, 89, 683, 113, 11, 151, 331, 73, 109, 61681, 127, 337, 5419, 178481, 2796203, 157, 1613, 233, 1103, 2089, 3033169, 1321, 20857, 599479, 281, 86171, 122921, 19, 37, 109, 433, 38737, 2731, 8191, 121369, 22366891, 13367, 164511353, 8831418697, 23, 353, 397, 683, 2113, 2931542417
Offset: 5
Examples
The irregular triangle begins 31 none 257 73 89, 683 113 11, 151, 331 73, 109 61681
References
- See A085012.
Links
Programs
-
Mathematica
Flatten[Table[p=Prime[n]; q=Transpose[FactorInteger[2^(p-1)-1]][[1]]; cnt={}; Do[If[PowerMod[2, p*q[[i]]-1, p*q[[i]]]==1, AppendTo[cnt,q[[i]]]], {i,Length[q]}]; cnt, {n,5,50}]]
Comments