cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180484 Numbers n such that r*(n/k)^2 is an integer, where n=(x_1 x_2 ... x_r) with x_i the decimal digits of n and k = x_1 * x_2 * ... * x_r.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 24, 36, 111, 112, 115, 128, 132, 135, 144, 175, 212, 216, 224, 312, 315, 384, 432, 612, 624, 672, 735, 816, 1111, 1112, 1113, 1114, 1115, 1116, 1121, 1122, 1124, 1125, 1127, 1128, 1131, 1134, 1144, 1161, 1164, 1176, 1184
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 07 2010

Keywords

Comments

A007602 is a subsequence, with 1114 the first nonmember of A007602. - D. S. McNeil, Sep 09 2010

Examples

			n=36, r=2, 2*(36/3*6)^2=8, n=36 belongs to the sequence.
		

Crossrefs

Subsequence of A052382. A007602 is a subsequence.

Programs

  • Maple
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A007954 := proc(n) mul(d, d= convert(n,base,10)) : end proc:
    isA180484 := proc(n) r := A055642(n) ; k := A007954(n) ; if k <> 0 then type(r*n^2/k^2,'integer') ; else false; end if; end proc:
    for n from 1 to 2200 do if isA180484(n) then printf("%d,",n) ; end if; end do:
    # R. J. Mathar, Sep 08 2010
  • PARI
    is(n)=my(d=digits(n), r=#d, k=vecprod(d)); k && denominator((n/k)^2*r)==1 \\ Charles R Greathouse IV, Jun 03 2020
  • Python
    from gmpy2 import t_mod, mpz
    from operator import mul
    from functools import reduce
    A180484 = [int(mpz(n)) for n in (str(x) for x in range(1, 10**9)) if not
              (n.count('0') or t_mod(mpz(n)**2*len(n),
              reduce(mul, (mpz(d) for d in n))**2))]
    # Chai Wah Wu, Aug 26 2014
    

Extensions

More terms from R. J. Mathar and D. S. McNeil, Sep 08 2010
Updated an A-number in a comment R. J. Mathar, Oct 18 2010