A180562 Triangle read by rows: T(n,k) = number of binary words of length n avoiding 010 and having k 1's.
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 5, 7, 5, 1, 1, 2, 6, 10, 11, 6, 1, 1, 2, 7, 13, 18, 16, 7, 1, 1, 2, 8, 16, 26, 30, 22, 8, 1, 1, 2, 9, 19, 35, 48, 47, 29, 9, 1, 1, 2, 10, 22, 45, 70, 83, 70, 37, 10, 1, 1, 2, 11, 25, 56, 96, 131, 136, 100, 46, 11
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 1; 1, 2, 3, 1; 1, 2, 4, 4, 1; 1, 2, 5, 7, 5, 1; 1, 2, 6, 10, 11, 6, 1; 1, 2, 7, 13, 18, 16, 7, 1; 1, 2, 8, 16, 26, 30, 22, 8, 1; T(5,3)=7 because we have 00111, 01101, 01110, 10011, 10110, 11001, 11100. As an infinite square array: 1 1 1 1 1 1 1 ... 1 2 3 4 5 6 7 ... 1 2 4 7 11 16 22 ... 1 2 5 10 18 30 47 ... 1 2 6 13 26 48 83 ... 1 2 7 16 35 70 131 ... 1 2 8 19 45 96 192 ... ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- D. Baccherini, D. Merlini, and R. Sprugnoli, Binary words excluding a pattern and proper Riordan arrays, Discrete Math. 307 (2007), no. 9-10, 1021--1037. MR2292531 (2008a:05003). See top of p. 1022. - _N. J. A. Sloane_, Mar 25 2014
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, p. 9.
Programs
-
Magma
/* As triangle: */ [[&+[(-1)^j*Binomial(n-k-1,j)*Binomial(n-2*j,k-j): j in [0..n-k]]: k in [0..n]]: n in [0..11]]; // Bruno Berselli, Jan 30 2013
-
Mathematica
Series[(1 + x^2*y)/(1- x - x*y + x^2*y - x^3*y^2), {x, 0, 20}, {y, 0, 10}] t[n_, k_] := Sum[(-1)^j*Binomial[n - k - 1, j]*Binomial[n - 2*j, k - j], {j, 0, n - k}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 30 2013 *)
Formula
G.f.: (1+x^2*y)/(1-x-x*y+x^2*y-x^3*y^2).
T(n,k) = Sum_{j=0..n-k} (-1)^j * C(n-k-1,j) * C(abs(n-2*j),k-j) with k=0..n.
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,0) = T(2,2) = 1, T(2,1) = 2, T(nk) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 25 2014
Comments