cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180564 Number of permutations of [n] having no isolated entries. An entry j of a permutation p is isolated if it is not preceded by j-1 and not followed by j+1. For example, the permutation 23178564 has 2 isolated entries: 1 and 4.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 14, 35, 81, 216, 557, 1583, 4444, 13389, 40313, 128110, 409519, 1366479, 4603338, 16064047, 56708713, 206238116, 759535545, 2870002519, 10986716984, 43019064953, 170663829777, 690840124506, 2832976091771, 11831091960887, 50040503185030
Offset: 0

Views

Author

Emeric Deutsch, Sep 09 2010

Keywords

Comments

a(n) = A180196(n,0).
a(n) = n! - A184181(n).

Examples

			a(5)=3 because we have 12345, 34512, and 45123.
		

Crossrefs

Programs

  • Maple
    d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n) options operator, arrow: sum(binomial(n-j-1, j-1)*(d[j]+d[j-1]), j = 1 .. floor((1/2)*n)) end proc:a(0):=1: seq(a(n), n = 0 .. 32);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1, 1][n+1],
          (3*a(n-1)+(n-3)*a(n-2)-(n-3)*a(n-3)+(n-4)*a(n-4))/2)
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Feb 17 2024
  • Mathematica
    a[n_] := If[n == 0, 1, With[{d = Subfactorial}, Sum[Binomial[n-j-1, j-1]* (d[j] + d[j-1]), {j, 1, Floor[n/2]}]]];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Sep 17 2024 *)

Formula

a(n) = Sum_{j=1..floor(n/2)} binomial(n-j-1, j-1)*(d(j) + d(j-1)), where d(i) = A000166(i) are the derangement numbers; a(0)=1.

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 17 2024