cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180567 The Wiener index of the Fibonacci tree of order n.

Original entry on oeis.org

0, 0, 4, 18, 96, 374, 1380, 4696, 15336, 48318, 148448, 446890, 1324104, 3872656, 11206764, 32143818, 91509120, 258855006, 728211180, 2038815272, 5684262480, 15789141750, 43712852544, 120663667538, 332191809936, 912339490464
Offset: 0

Views

Author

Emeric Deutsch, Sep 14 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
The Wiener index of a connected graph is the sum of the distances between all unordered pairs of nodes in the graph.

Examples

			a(2)=4 because in the tree /\ we have 3 distances: 1, 1, and 2.
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Programs

  • Maple
    G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 38)): for n from 0 to 35 do r[n] := sort(coeff(Gser, z, n)) end do: w[0] := 0: w[1] := 0: for n from 2 to 30 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 0 .. 27);

Formula

a(n) = Sum(k*A180566(n,k), k>=0).
The Wiener polynomial w(n,t) of the Fibonacci tree of order n satisfies the recurrence relation w(n,t)=w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2,t) + t^2*r(n-1,t)*r(n-2,t), w(0,t)=w(1,t)=0, where r(n,t) is the generating polynomial of the nodes of the Fibonacci tree of order n with respect to the level of the nodes (for example, 1+2t for the tree /\; see A178522). The Wiener index is the derivative of w(n,t) with respect to t, evaluated at t=1 (see the Maple program).
Empirical G.f.: -2*x^2*(x^7-2*x^6-6*x^5+6*x^4+6*x^3-8*x^2+3*x-2)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [Colin Barker, Nov 17 2012]