A180567 The Wiener index of the Fibonacci tree of order n.
0, 0, 4, 18, 96, 374, 1380, 4696, 15336, 48318, 148448, 446890, 1324104, 3872656, 11206764, 32143818, 91509120, 258855006, 728211180, 2038815272, 5684262480, 15789141750, 43712852544, 120663667538, 332191809936, 912339490464
Offset: 0
Keywords
Examples
a(2)=4 because in the tree /\ we have 3 distances: 1, 1, and 2.
References
- D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
Links
- Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
Crossrefs
Cf. A180566
Programs
-
Maple
G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 38)): for n from 0 to 35 do r[n] := sort(coeff(Gser, z, n)) end do: w[0] := 0: w[1] := 0: for n from 2 to 30 do w[n] := sort(expand(w[n-1]+w[n-2]+t*r[n-1]+t*r[n-2]+t^2*r[n-1]*r[n-2])) end do: seq(subs(t = 1, diff(w[n], t)), n = 0 .. 27);
Formula
a(n) = Sum(k*A180566(n,k), k>=0).
The Wiener polynomial w(n,t) of the Fibonacci tree of order n satisfies the recurrence relation w(n,t)=w(n-1,t) + w(n-2,t) + t*r(n-1,t) + t*r(n-2,t) + t^2*r(n-1,t)*r(n-2,t), w(0,t)=w(1,t)=0, where r(n,t) is the generating polynomial of the nodes of the Fibonacci tree of order n with respect to the level of the nodes (for example, 1+2t for the tree /\; see A178522). The Wiener index is the derivative of w(n,t) with respect to t, evaluated at t=1 (see the Maple program).
Empirical G.f.: -2*x^2*(x^7-2*x^6-6*x^5+6*x^4+6*x^3-8*x^2+3*x-2)/((x+1)^2*(x^2-3*x+1)^2*(x^2+x-1)^2). [Colin Barker, Nov 17 2012]
Comments