A180571 The Wiener index of the graph \|/\/\/...\/_\|/ having n nodes on the horizontal path.
58, 136, 259, 436, 676, 988, 1381, 1864, 2446, 3136, 3943, 4876, 5944, 7156, 8521, 10048, 11746, 13624, 15691, 17956, 20428, 23116, 26029, 29176, 32566, 36208, 40111, 44284, 48736, 53476, 58513, 63856, 69514, 75496, 81811, 88468, 95476, 102844, 110581, 118696
Offset: 2
Links
- I. Gutman, S.-L. Lee, C.-H. Chu, and Y.-L. Luo, Chemical applications of the Laplacian spectrum of molecular graphs: Studies of the Wiener number, Indian J. Chem., 33A(07) (1994), 603-608.
- I. Gutman, W. Linert, I. Lukovits, and Z. Tomović, On the multiplicative Wiener index and its possible chemical applications, Monatshefte für Chemie, 131 (2000), 421-427 (see the equation between (10) and (11); replace n with n+2).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A180570.
Programs
-
Maple
seq((2+9*n+18*n^2+3*n^3)*1/2, n = 2 .. 40);
Formula
a(n) = (2 + 9*n + 18*n^2 + 3*n^3)/2.
a(n) = Sum_{k >= 0} k*A180570(n,k).
G.f.: z^2*(58 - 96*z + 63*z^2 - 16*z^3)/(1 - z)^4.
Comments