A180577 The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).
15, 80, 195, 360, 575, 840, 1155, 1520, 1935, 2400, 2915, 3480, 4095, 4760, 5475, 6240, 7055, 7920, 8835, 9800, 10815, 11880, 12995, 14160, 15375, 16640, 17955, 19320, 20735, 22200, 23715, 25280, 26895, 28560, 30275, 32040, 33855, 35720, 37635, 39600, 41615, 43680, 45795
Offset: 1
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60, 1996, pp. 959-969.
- Eric Weisstein's World of Mathematics, Windmill Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(5*n*(-2+5*n), n = 1 .. 40);
-
PARI
a(n)=5*n*(5*n-2) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 5*n*(5*n-2).
G.f.: -5*x*(7*x+3)/(x-1)^3. - Colin Barker, Oct 30 2012
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 5*exp(x)*x*(3 + 5*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
Extensions
More terms from Elmo R. Oliveira, Apr 03 2025
Comments