A180605 Number of commutation classes of reduced words for the longest element of a Weyl group of type B_n.
1, 2, 14, 330, 25396, 6272842, 4925166862, 12221171869734, 95482373388042562
Offset: 1
Examples
For n=2 the a(2)=2 commutation classes of words are 0101 and 1010. For n=3 the a(3)=14 commutation classes of words are those of 210121010, 121012010, 212012010, 120101210, 101210120, 120120120, 210120101, 201012101, 012101201, 201201201, 012010121, 101201012, 010121012, 012012012.
Links
- Table of n, a(n) for n = 1..9
- Matthew J. Samuel, Word posets, complexity, and Coxeter groups, arXiv:1101.4655 [math.CO]
Programs
-
Maple
#classes: Wrapper for computing number of commutation classes; pass a permutation of type B as a list #Returns number of commutation classes #Longest element is of the form [-1, -2, ..., -n] classes:=proc(perm) option remember: RETURN(classesRecurse(Array(perm),-1,1)): end: #classesRecurse: Recursive procedure for computing number of commutation classes classesRecurse:=proc(perm, spot, negs) local swaps, i, sums, c, doneany: sums:=0: doneany:=0: for i from spot to ArrayNumElems(perm)-2 do if i=-1 and perm[1]<0 then perm[1]:=-perm[1]: c:=classes(convert(perm,`list`)): sums:=sums+negs*c+classesRecurse(perm,i+2,-negs): perm[1]:=-perm[1]: doneany:=1: elif i>-1 and perm[i+1]>perm[i+2] then swaps:=perm[i+1]: perm[i+1]:=perm[i+2]: perm[i+2]:=swaps: c:=classes(convert(perm, `list`)): sums:=sums+negs*c+classesRecurse(perm,i+2,-negs): swaps:=perm[i+1]: perm[i+1]:=perm[i+2]: perm[i+2]:=swaps: doneany:=1: end: end: if spot=-1 and doneany=0 then RETURN(1): else RETURN(sums): end: end:
Extensions
a(9) computed with a Java program by Matthew J. Samuel, Jan 30 2011