cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180609 G.f. L(x) satisfies: L(x) = L(exp(x)-1)*(1-exp(-x))/x = Sum_{n>=1} a(n)*x^n/(n!*(n+1)!).

Original entry on oeis.org

1, -1, 3, -16, 110, -540, -9240, 292320, 14908320, -1639612800, -33013854720, 21046667685120, -549927873855360, -637881314775344640, 76198391578224115200, 41404329870413936025600, -12499862617277304901632000, -5212560012919105291193548800, 3436632117109253032257698611200, 1146156616720354265092896141312000, -1615552168543480516126725021634560000, -379914190499326491647463301427478528000, 1268235921756889621556352102589895172096000
Offset: 1

Views

Author

Paul D. Hanna, Sep 12 2010

Keywords

Examples

			G.f.: L(x) = x/(1!*2!) - x^2/(2!*3!) + 3*x^3/(3!*4!) - 16*x^4/(4!*5!) + 110*x^5/(5!*6!) - 540*x^6/(6!*7!) - 9240*x^7/(7!*8!) + 292320*x^8/(8!*9!) -+...
The Riordan array ((exp(x)-1)/x, exp(x)-1) begins:
1;
1/(1!2!), 1;
2/(2!3!), 2/(1!2!), 1;
6/(3!4!), 7/(2!3!), 3/(1!2!), 1;
24/(4!5!), 36/(3!4!), 15/(2!3!), 4/(1!2!), 1;
120/(5!6!), 248/(4!5!), 108/(3!4!), 26/(2!3!), 5/(1!2!), 1;
720/(6!7!), 2160/(5!6!), 1032/(4!5!), 240/(3!4!), 40/(2!3!), 6/(1!2!), 1; ...
where the g.f. of column k = ((exp(x)-1)/x)^(k+1) for k>=0.
...
The matrix log of the above array begins:
0;
1/(1!2!), 0;
-1/(2!3!), 2/(1!2!), 0;
3/(3!4!), -2/(2!3!), 3/(1!2!), 0;
-16/(4!5!), 6/(3!4!), -3/(2!3!), 4/(1!2!), 0;
110/(5!6!), -32/(4!5!), 9/(3!4!), -4/(2!3!), 5/(1!2!), 0;
-540/(6!7!), 220/(5!6!), -48/(4!5!), 12/(3!4!), -5/(2!3!), 6/(1!2!), 0;
-9240/(7!8!), -1080/(6!7!), 330/(5!6!), -64/(4!5!), 15/(3!4!), -6/(2!3!), 7/(1!2!), 0; ...
in which the g.f. of column k equals (k+1)*L(x) for k>=0 and L(x) is the g.f. of this sequence.
		

Crossrefs

Cf. A180610.
The fractions a(n)/n! are A134242(n)/A134243(n).

Programs

  • Mathematica
    K[1] = 1;
    K[n_] := K[n] = -2/((n+2)(n-1)) Sum[StirlingS2[n+1, i] K[i], {i, 1, n-1}];
    a[n_] := n! K[n];
    Array[a, 23] (* Jean-François Alcover, Jul 26 2018, from the Manetti-Ricciardi recurrence *)
  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,polcoeff(((exp(x+x^2*O(x^n))-1)/x)^c,r-c))),L=sum(n=1,#M,-(M^0-M)^n/n));n!*(n+1)!*L[n+1,1]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. satisfies: L(x) = (1+x)*log(1+x) * L( log(1+x) ) /x.
Let E_n(x) = E_{n-1}(exp(x)-1) denote the n-th iteration of exp(x)-1, then
. L(E_n(x)) = L(x) * x * E_n'(x) / E_n(x) for all n.
G.f. L(x) forms column 0 in the matrix log of the Riordan array ((exp(x)-1)/x, exp(x)-1).
Manetti-Ricciardi Theorem 4.4 give a recurrence for K_n := a(n)/n! in terms of Stirling numbers. - N. J. A. Sloane, May 25 2016

A180614 G.f. satisfies: L(x) = L(x*exp(x))/(1+x) = Sum_{n>=1} a(n)*x^n/(n!*(n-1)!).

Original entry on oeis.org

1, -1, 5, -60, 1284, -41520, 1818480, -99906240, 6615483840, -547250618880, 64405640678400, -10795621264243200, 1874134190688883200, -168421749610341427200, -33755136201402065049600, -12663782909587871373312000, 33228107527756336198907904000, -9780793395112024278861643776000, -17994218650633803932152655560704000, 15220589020710912054512237626933248000, 19029826524235967059926689085261791232000
Offset: 1

Views

Author

Paul D. Hanna, Sep 12 2010

Keywords

Comments

G.f. L(x) forms the column g.f.s in the matrix log of the Riordan array (exp(x), x*exp(x)).

Examples

			G.f.: L(x) = x - 1*x^2/(2!*1!) + 5*x^3/(3!*2!) - 60*x^4/(4!*3!) + 1284*x^5/(5!*4!) - 41520*x^6/(6!*5!) + 1818480*x^7/(7!*6!) -+...
		

Crossrefs

Cf. A180610.

Programs

  • PARI
    {a(n)=local(M=matrix(n+1,n+1,r,c,if(r>=c,polcoeff(exp(c*x+x*O(x^n)),r-c))),L=sum(n=1,#M,-(M^0-M)^n/n));if(n<1,0,n!*(n-1)!*L[n+1,1])}
    for(n=1, 30, print1(a(n), ", "))

Formula

a(n) = A180610(n)/n for n>0; the g.f. for this sequence is the same as for A180610; see A180610 for more formulas and examples.
Showing 1-2 of 2 results.