A180615 Numbers starting with 1 such that the sum of any two distinct elements has an odd number of distinct prime factors.
1, 2, 3, 6, 58, 124, 254, 309, 519, 1029, 1179, 1569, 1986, 3795, 10008, 31133, 39260, 76772, 126798, 190293, 613553, 873413, 1324947, 16893137, 23186977, 65348522, 91513433, 168375480, 836588442, 844570409
Offset: 1
Keywords
Examples
The set {6, 58, 124} gives the number of distinct prime factors {1, 3, 3}.
Crossrefs
Cf. A180514.
Programs
-
Maple
with(numtheory):nn:=1000000:T:=array(1..nn): U:=array(1..nn): for p from 1 to nn do: T[p]:=p:U[p]:=1:od:for u from 1 to 30 do: k:=1+u:for n from u+1 to nn do:s:=T[n]+T[u]:s1:=nops(factorset(s)):z:=irem(s1, 2):if z=1 then U[k]:=T[n]:k:=k+1:else fi:od:for i from 1 to nn do:T[i]:=U[i]:od:od:for j from 1 to 30 do:printf(`%d, `, T[j]):od:
-
Mathematica
t={1}; k=1; Do[k++; While[! And @@ OddQ[Length /@ FactorInteger[t+k]], k++]; AppendTo[t, k], {10}]; t
Extensions
a(23)-a(30) from Donovan Johnson, Jan 25 2011
Comments