A180619 Consider the function f(n)=1/(Abs(n-r)), where r is the Dottie number, A003957. Let g(n) be defined by the recursion g(n)=Cos(g(n-1)),g(0)=1. Now, a(n)=floor(f(g(n))).
3, 5, 8, 11, 18, 26, 40, 58, 88, 130, 194, 287, 427, 633, 941, 1396, 2074, 3078, 4571, 6785, 10073, 14954, 22200, 32957, 48926, 72632, 107826, 160071, 237631, 352771, 523702, 777453, 1154157, 1713385, 2543579, 3776029, 5605645, 8321770, 12353952
Offset: 0
Keywords
Examples
For n=3, g(3)=cos(cos(cos(1))) f(g(3))~=11.7931005 So a(3)=floor(11.7931005)=11.
Comments