cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180670 a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 9, 42, 140, 383, 925, 2056, 4316, 8705, 17069, 32810, 62192, 116743, 217673, 404000, 747496, 1380177, 2544865, 4688186, 8631620, 15886111, 29230725, 53776968, 98926372, 181971057, 334716197, 615660634, 1132400520
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n+2) represent the Kn15 and Kn25 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums.

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25).

Programs

  • Maple
    nmax:=29: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):= a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 od: seq(a(n),n=0..nmax);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+(8n^3-48n^2+112n-96)/3},a,{n,30}] (* or *) LinearRecurrence[{5,-9,7,-3,3,-3,1},{0,0,1,9,42,140,383},30] (* Harvey P. Dale, Dec 04 2019 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+(8*n^3-48*n^2+112*n-96)/3 with a(0)=0, a(1)=0 and a(2)=1.
a(n) = a(n-1)+A001590(n+7)-(12+4*n+4*n^2) with a(0)=0.
a(n) = sum(A008412(m)*A000073(n-m),m=0..n).
a(n+2) = add(A008288(n-k+4,k+4),k=0..floor(n/2)).
GF(x) = (x^2*(1+x)^4)/((1-x)^4*(1-x-x^2-x^3)).