cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180678 The Ze2 sums of the Pell-Jacobsthal triangle A013609.

Original entry on oeis.org

1, 2, 5, 16, 57, 206, 737, 2612, 9213, 32442, 114205, 402072, 1415713, 4985126, 17554489, 61816252, 217679141, 766531986, 2699251381, 9505089568, 33471028105, 117864194430, 415044573969, 1461529529924, 5146600421325
Offset: 0

Views

Author

Johannes W. Meijer, Sep 21 2010

Keywords

Comments

The a(n) represent the Ze2 sums of the Pell-Jacobsthal triangle A013609. See A180662 for information about these zebra and other chess sums.

Crossrefs

Cf. A140413 (Ze1), A180678 (Ze2), A097117 (Ze3), A055588 (Ze4).

Programs

  • GAP
    a:=[1,2,5];; for n in [4..30] do a[n]:=6*a[n-1]-11*a[n-2]+8*a[n-3]; od; a; # G. C. Greubel, Jun 06 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3) )); // G. C. Greubel, Jun 06 2019
    
  • Maple
    nmax:=24: a(0):=1: a(1):=2: a(2):=5: for n from 3 to nmax do a(n) := 6*a(n-1)-11*a(n-2)+8*a(n-3) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,-11,8}, {1,2,5}, 30] (* or *) CoefficientList[ Series[(1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3), {x,0,30}], x] (* G. C. Greubel, Jun 06 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)) \\ G. C. Greubel, Jun 06 2019
    
  • Sage
    ((1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 06 2019
    

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=2 and a(2)= 5.
a(n) = Sum_{k=0..floor(n/2)} A013609(n+k,n-2*k).
G.f.: (1-4*x+4*x^2)/(1-6*x+11*x^2-8*x^3).