cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180686 Positive integers k such that the number of intersections of diagonals in the interior of a regular k-gon is prime.

Original entry on oeis.org

5, 6, 14, 24, 44, 58, 72, 76, 80, 84, 86, 104, 128, 134, 138, 180, 186, 188, 218, 228, 246, 256, 266, 280, 300, 320, 352, 360, 380, 390, 408, 450, 480, 508, 518, 524, 526, 532, 546, 548, 552, 576, 584, 590, 604, 616, 630, 656, 658, 686, 712, 724, 726, 728, 730
Offset: 1

Views

Author

Robert G. Wilson v, Sep 16 2010

Keywords

References

  • Chris K. Caldwill & G. L. Honaker, Jr., Prime Curios!, The Dictionary of Prime Number Trivia, CreateSpace, Sept. 2009, p. 145.

Crossrefs

Cf. A006561.

Programs

  • Mathematica
    del[m_, n_] := If[ Mod[n, m] == 0, 1, 0]; Int[n_] := If[n < 4, 0, Binomial[n, 4] + del[2, n] (-5n^3 + 45n^2 - 70n + 24)/24 - del[4, n] (3n/2) + del[6, n] (-45n^2 + 262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Select[ Range@ 759, PrimeQ@ Int@# &]
  • Sage
    def is_A180686(k):
        return Integer(binomial(k,4) + (-5*k^3+45*k^2-70*k+24)*(k%2==0)/24
            - 3*k*(k%4==0)/2 + (-45*k^2+262*k)*(k%6==0)/6 + 42*k*(k%12==0)
            + 60*k*(k%18==0) + 35*k*(k%24==0) - 38*k*(k%30==0)
            - 82*k*(k%42==0) - 330*k*(k%60==0) - 144*k*(k%84==0)
            - 96*k*(k%90==0) - 144*k*(k%120==0) - 96*k*(k%210==0)).is_prime()
    print([k for k in range(1, 1000) if is_A180686(k)])  # Robin Visser, Jul 29 2024

Extensions

Name edited by Robin Visser, Jul 29 2024