A180686 Positive integers k such that the number of intersections of diagonals in the interior of a regular k-gon is prime.
5, 6, 14, 24, 44, 58, 72, 76, 80, 84, 86, 104, 128, 134, 138, 180, 186, 188, 218, 228, 246, 256, 266, 280, 300, 320, 352, 360, 380, 390, 408, 450, 480, 508, 518, 524, 526, 532, 546, 548, 552, 576, 584, 590, 604, 616, 630, 656, 658, 686, 712, 724, 726, 728, 730
Offset: 1
Keywords
References
- Chris K. Caldwill & G. L. Honaker, Jr., Prime Curios!, The Dictionary of Prime Number Trivia, CreateSpace, Sept. 2009, p. 145.
Links
- Robin Visser, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A006561.
Programs
-
Mathematica
del[m_, n_] := If[ Mod[n, m] == 0, 1, 0]; Int[n_] := If[n < 4, 0, Binomial[n, 4] + del[2, n] (-5n^3 + 45n^2 - 70n + 24)/24 - del[4, n] (3n/2) + del[6, n] (-45n^2 + 262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Select[ Range@ 759, PrimeQ@ Int@# &]
-
Sage
def is_A180686(k): return Integer(binomial(k,4) + (-5*k^3+45*k^2-70*k+24)*(k%2==0)/24 - 3*k*(k%4==0)/2 + (-45*k^2+262*k)*(k%6==0)/6 + 42*k*(k%12==0) + 60*k*(k%18==0) + 35*k*(k%24==0) - 38*k*(k%30==0) - 82*k*(k%42==0) - 330*k*(k%60==0) - 144*k*(k%84==0) - 96*k*(k%90==0) - 144*k*(k%120==0) - 96*k*(k%210==0)).is_prime() print([k for k in range(1, 1000) if is_A180686(k)]) # Robin Visser, Jul 29 2024
Extensions
Name edited by Robin Visser, Jul 29 2024