cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A197601 G.f.: exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n ).

Original entry on oeis.org

1, 1, 5, 14, 52, 187, 708, 2734, 10758, 43004, 174004, 711660, 2936564, 12211688, 51124185, 215299685, 911445413, 3876523626, 16556573129, 70980163570, 305343924258, 1317634326631, 5702146948069, 24741071869651, 107608326588838, 469073933764287
Offset: 0

Views

Author

Paul D. Hanna, Oct 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + 9017*x^7/7 + 38969*x^8/8 +...+ A198059(n)*x^n/n +...
and equals the sum of the series:
log(A(x)) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 +...
which involves the squares of the coefficients in even powers of (1+x).
The logarithm of the g.f. can also be expressed as:
log(A(x)) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 +...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 +...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 +...)*x^5/5 +...
which involves the squares of the coefficients in odd powers of 1/(1-x).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[Hypergeometric2F1[-2*k, -2*k, 1, x]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2022 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(2*m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k+x*O(x^n)) *x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n ).
Logarithmic derivative equals A198059.

A183146 G.f.: Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k]^3 * x^n.

Original entry on oeis.org

1, 1, 4, 16, 80, 407, 2221, 12380, 71196, 417016, 2484839, 15001779, 91603298, 564661194, 3509278042, 21964437947, 138330334357, 875977578584, 5574225259696, 35626247068500, 228592067446715, 1471959684881231
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2010

Keywords

Comments

Compare g.f. to a g.f. of the Whitney numbers in A051286:
Sum_{n>=0} [Sum_{k=0..n} C(n,k)^2*x^k] * x^n.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 80*x^4 + 407*x^5 + 2221*x^6 +...
which equals the sum of the series:
A(x) = 1 + (1 + x)^3*x + (1 + 4*x + x^2)^3*x^2
+ (1 + 9*x + 9*x^2 + x^3)^3*x^3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^3*x^4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^3*x^5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^3*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,sum(k=0,m,binomial(m,k)^2*x^k)^3*x^m)+x*O(x^n),n)}
Showing 1-2 of 2 results.