cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180719 Logarithmic derivative of A180718.

Original entry on oeis.org

1, 5, 16, 61, 226, 884, 3543, 14429, 59623, 248950, 1049159, 4454356, 19032976, 81769735, 352967821, 1529948477, 6655903632, 29050257899, 127162016206, 558088733406, 2455157735151, 10824115727199, 47814658900427
Offset: 1

Views

Author

Paul D. Hanna, Sep 24 2010

Keywords

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 16*x^3/3 + 61*x^4/4 + 226*x^5/5 +...
which equals the sum of the series:
L(x) = (1 + x)^2*x
+ (1 + 4*x + x^2)^2*x^2/2
+ (1 + 9*x + 9*x^2 + x^3)^2*x^3/3
+ (1 + 16*x + 36*x^2 + 16*x^3 + x^4)^2*x^4/4
+ (1 + 25*x + 100*x^2 + 100*x^3 + 25*x^4 + x^5)^2*x^5/5
+ (1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)^2*x^6/6 +...
where exponentiation yields the integer series:
exp(L(x)) = 1 + x + 3*x^2 + 8*x^3 + 25*x^4 + 80*x^5 + 271*x^6 + 952*x^7 + 3443*x^8 + 12758*x^9 + 48212*x^10 +...+ A180718(n)*x^n/n +...
		

Crossrefs

Cf. A180718.

Programs

  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,sum(k=0,m,binomial(m,k)^2*x^k)^2*x^m/m)+x*O(x^n),n)}

Formula

L.g.f.: L(x) = Sum_{n>=0} [ Sum_{k=0..n} C(n,k)^2*x^k ]^2*x^n/n.