A180733 Largest element of n-th row of Pascal's triangle that is not a multiple of n.
1, 1, 6, 1, 20, 1, 70, 84, 252, 1, 495, 1, 3432, 5005, 12870, 1, 48620, 1, 184756, 293930, 705432, 1, 2704156, 3268760, 10400600, 17383860, 40116600, 1, 145422675, 1, 601080390, 193536720, 2333606220, 2319959400, 9075135300, 1
Offset: 2
Examples
a(4) = 6 because in the fourth row of Pascal's triangle, 1 and 6 are not multiples of 4, and 6 is the largest of those. a(5) = 1 because in the fifth row all the other terms are multiples of 5.
References
- Vladimir Andreevich Uspenskii, Pascal's Triangle. Translated and adapted from the Russian by David J. Sookne and Timothy McLarnan. University of Chicago Press, 1974, p. 11.
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..1000
Programs
-
Maple
a:= proc(n) local mx, t, i, r; mx:=1; t:=n; for i from 2 to floor(n/2) do t:= t* (n-i+1)/i; if irem(t,n)>0 and t>mx then mx:=t fi od; mx end; seq(a(n), n=2..100); # Alois P. Heinz, Jan 22 2011
-
Mathematica
Table[Max[Select[Table[Binomial[n, m], {m, 0, n}], GCD[#, n] < n &]], {n, 2, 30}]
Comments