cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A180772 Number of distinct solutions to the congruence x(1)*x(2) == 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 3, 3, 4, 0, 9, 0, 6, 8, 10, 0, 15, 0, 17, 12, 10, 0, 27, 10, 12, 15, 25, 0, 38, 0, 26, 20, 16, 24, 51, 0, 18, 24, 51, 0, 56, 0, 41, 51, 22, 0, 74, 21, 50, 32, 49, 0, 69, 40, 75, 36, 28, 0, 121, 0, 30, 75, 68, 48, 92, 0, 65, 44, 106, 0, 141, 0, 36, 90, 73, 60, 110, 0, 138
Offset: 1

Views

Author

R. H. Hardin, formula from Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Also, number of ordered pairs (a, b) with 0 < a <= b such that a*b = c*n + d and c = d where 0 < a, b, c, d < n. - Naohiro Nomoto, Oct 02 2021

Examples

			The a(12)=9 solutions for product of a single 1..11 pair == 0 (mod 12) are 2*6, 3*4, 3*8, 4*6, 4*9, 6*6, 6*8, 6*10, and 8*9.
		

Crossrefs

Column 1 of A180782.

Programs

  • Mathematica
    f1[p_, e_] := (e*(p - 1)/p + 1)*p^e; f2[p_, e_] := p^Floor[e/2]; a[n_] := (Times @@ f1 @@@ (fct = FactorInteger[n]) + Times @@ f2 @@@ fct)/2 - n; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)

Formula

a(n) = A174088(n) - n = ( A018804(n) + A000188(n) )/2 - n.

A180773 Number of distinct solutions of Sum_{i=1..2} (x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 1, 2, 6, 13, 23, 36, 62, 78, 123, 150, 238, 255, 355, 427, 567, 580, 864, 810, 1202, 1232, 1471, 1452, 2310, 1960, 2479, 2712, 3414, 2947, 4649, 3600, 5126, 5022, 5673, 5845, 8457, 6165, 7975, 8405, 11062, 8410, 13133, 9702, 13726, 14475, 14323, 12696
Offset: 1

Views

Author

R. H. Hardin, Sep 20 2010

Keywords

Examples

			Solutions for sum of products of 2 1..5 pairs = 0 (mod 6) are
(1*1 + 1*5) (1*2 + 1*4) (1*2 + 2*2) (1*2 + 2*5) (1*2 + 4*4) (1*3 + 1*3)
(1*3 + 3*3) (1*3 + 3*5) (1*4 + 2*4) (1*4 + 4*5) (1*5 + 5*5) (2*2 + 2*4)
(2*2 + 4*5) (2*3 + 2*3) (2*3 + 3*4) (2*4 + 2*5) (2*4 + 4*4) (2*5 + 4*5)
(3*3 + 3*3) (3*3 + 3*5) (3*4 + 3*4) (3*5 + 3*5) (4*4 + 4*5)
		

Crossrefs

Column 2 of A180782.

A180774 Number of distinct solutions of sum{i=1..3}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 5, 14, 42, 119, 253, 526, 944, 1702, 2655, 4510, 6284, 9867, 13519, 19980, 25128, 37286, 44562, 63802, 76850, 102370, 118591, 168208, 183320, 241554, 279852, 359754, 387016, 528861, 543620, 712450, 780810, 953120, 1025355, 1360255
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 3 of A180782

Examples

			Solutions for sum of products of 3 1..3 pairs = 0 (mod 4) are
(1*1 + 1*1 + 1*2) (1*1 + 1*1 + 2*3) (1*1 + 1*2 + 3*3) (1*1 + 1*3 + 2*2)
(1*1 + 2*3 + 3*3) (1*2 + 1*2 + 2*2) (1*2 + 1*3 + 1*3) (1*2 + 2*2 + 2*3)
(1*2 + 3*3 + 3*3) (1*3 + 1*3 + 2*3) (1*3 + 2*2 + 3*3) (2*2 + 2*2 + 2*2)
(2*2 + 2*3 + 2*3) (2*3 + 3*3 + 3*3)
		

A180775 Number of distinct solutions of sum{i=1..4}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 1, 3, 34, 145, 522, 1518, 4041, 9150, 19970, 38555, 74370, 128040, 224434, 358988, 587014, 876114, 1372578, 1941624, 2912816, 4001868, 5742391, 7599933, 10831065, 13788935, 18946564, 24080514, 32270596, 39619720, 53256875, 63655605, 83580675
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 4 of A180782

Examples

			Solutions for sum of products of 4 1..3 pairs = 0 (mod 4) are
(1*1 + 1*1 + 1*1 + 1*1) (1*1 + 1*1 + 1*1 + 3*3) (1*1 + 1*1 + 1*2 + 2*2)
(1*1 + 1*1 + 1*3 + 1*3) (1*1 + 1*1 + 2*2 + 2*3) (1*1 + 1*1 + 3*3 + 3*3)
(1*1 + 1*2 + 1*2 + 1*3) (1*1 + 1*2 + 1*3 + 2*3) (1*1 + 1*2 + 2*2 + 3*3)
(1*1 + 1*3 + 1*3 + 3*3) (1*1 + 1*3 + 2*2 + 2*2) (1*1 + 1*3 + 2*3 + 2*3)
(1*1 + 2*2 + 2*3 + 3*3) (1*1 + 3*3 + 3*3 + 3*3) (1*2 + 1*2 + 1*2 + 1*2)
(1*2 + 1*2 + 1*2 + 2*3) (1*2 + 1*2 + 1*3 + 3*3) (1*2 + 1*2 + 2*2 + 2*2)
(1*2 + 1*2 + 2*3 + 2*3) (1*2 + 1*3 + 1*3 + 2*2) (1*2 + 1*3 + 2*3 + 3*3)
(1*2 + 2*2 + 2*2 + 2*3) (1*2 + 2*2 + 3*3 + 3*3) (1*2 + 2*3 + 2*3 + 2*3)
(1*3 + 1*3 + 1*3 + 1*3) (1*3 + 1*3 + 2*2 + 2*3) (1*3 + 1*3 + 3*3 + 3*3)
(1*3 + 2*2 + 2*2 + 3*3) (1*3 + 2*3 + 2*3 + 3*3) (2*2 + 2*2 + 2*2 + 2*2)
(2*2 + 2*2 + 2*3 + 2*3) (2*2 + 2*3 + 3*3 + 3*3) (2*3 + 2*3 + 2*3 + 2*3)
(3*3 + 3*3 + 3*3 + 3*3)
		

A180776 Number of distinct solutions of sum{i=1..5}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 7, 62, 402, 1960, 7587, 25470, 73146, 193036, 455161, 1022770, 2098782, 4196208, 7797217, 14286908, 24527232, 42125055, 67955391, 110571248, 170260213, 264585538, 390623343, 588725404, 837466268, 1220597598, 1696535256
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 5 of A180782

Examples

			Solutions for sum of products of 5 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*2) (1*1 + 1*1 + 1*1 + 1*2 + 2*2)
(1*1 + 1*1 + 1*2 + 2*2 + 2*2) (1*1 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*2 + 2*2 + 2*2 + 2*2) (1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*2 + 2*2 + 2*2 + 2*2 + 2*2)
		

A180777 Number of distinct solutions of sum{i=1..6}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 1, 12, 118, 995, 6518, 32893, 139369, 499659, 1599064, 4551225, 12014040, 29034510, 66658219, 142828285, 295240250, 576393604, 1098913338, 1993354080, 3560486370, 6091808112, 10312711744, 16796812703, 27247744649, 42564714900
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 6 of A180782

Examples

			Solutions for sum of products of 6 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2) (1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2) (1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2) (1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2) (1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2) (2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
		

A180778 Number of distinct solutions of sum{i=1..7}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 9, 198, 2294, 19467, 126864, 674922, 2997717, 11615754, 39660995, 123162204, 348412638, 920581314, 2264397902, 5294830516, 11692554408, 24858751383, 50403391227, 99282023930, 187902783369, 347689331443, 621482071507
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 7 of A180782

Examples

			Solutions for sum of products of 7 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
		

A180779 Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 1, 15, 327, 4856, 53455, 444003, 2948305, 16112289, 75389116, 307372600, 1122069080, 3701885580, 11258893954, 31699979961, 83910860201, 209004408715, 496246703439, 1121475446118, 2440154664350, 5096346969372, 10323359668079
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 8 of A180782

Examples

			Solutions for sum of products of 8 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
		

A180780 Number of distinct solutions of sum{i=1..9}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 0, 22, 499, 9730, 136491, 1430727, 11783122, 78770456, 443607864, 2151608155, 9218591346, 35373572400, 123749340262, 398005623516, 1192411118090, 3344070542568, 8869510553867, 22304900540593, 53635016669434
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 9 of A180782

Examples

			Solutions for sum of products of 9 1..2 pairs = 0 (mod 3) are
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)
(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)
(1*1 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*1 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)
(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)
(1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
(2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)
		

A180781 Number of distinct solutions of sum{i=1..10}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1.

Original entry on oeis.org

0, 1, 18, 756, 18478, 327338, 4292145, 43576141, 354466005, 2394458182, 13770292261, 69111228938, 307750080438, 1236998118274, 4537247867399, 15375840213938, 48489022864504, 143625325278096, 401488209736317
Offset: 1

Views

Author

R. H. Hardin Sep 20 2010

Keywords

Comments

Column 10 of A180782
Showing 1-10 of 10 results.