cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180801 Number of distinct solutions of sum{i=1..9}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1.

Original entry on oeis.org

1, 30, 676, 12502, 163480, 1687310, 13449091, 89142751, 492505059, 2376231744, 10047650419, 38448350058, 133156230854, 427570371184, 1270967124805, 3561662099758, 9383313309748, 23597905122682, 56409558588283
Offset: 1

Views

Author

R. H. Hardin, suggested by Max Alekseyev in the Sequence Fans Mailing List, Sep 20 2010

Keywords

Comments

Column 9 of A180803

Examples

			Solutions for sum of products of 9 0..1 pairs = 0 (mod 2) are
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)
(0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)