A180863 Wiener index of the n-sun graph.
6, 21, 44, 75, 114, 161, 216, 279, 350, 429, 516, 611, 714, 825, 944, 1071, 1206, 1349, 1500, 1659, 1826, 2001, 2184, 2375, 2574, 2781, 2996, 3219, 3450, 3689, 3936, 4191, 4454, 4725, 5004, 5291, 5586, 5889, 6200, 6519, 6846, 7181, 7524, 7875, 8234, 8601
Offset: 2
Links
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60 (1996), 959-969.
- Eric Weisstein's World of Mathematics, Sun Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq(n*(4*n-5), n = 2 .. 50);
-
Mathematica
(* Start from Eric W. Weisstein, Sep 07 2017, adapted to new offset *) Table[n (4 n - 5), {n, 2, 20}] LinearRecurrence[{3, -3, 1}, {6, 21, 44}, 20] CoefficientList[Series[(-6 - 3 x + x^2)/(-1 + x)^3, {x, 0, 20}], x] (* End *)
-
PARI
a(n)=n*(4*n-5) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = n*(4*n-5).
G.f.: x^2*(-6-3*x+x^2)/(x-1)^3. - Colin Barker, Oct 31 2012, adapted to new offset Sep 29 2021
a(n) = 3*a(n-1) - 3*a(n-2) + a(n). - Eric W. Weisstein, Sep 07 2017
Sum_{n>=2} 1/a(n) = 1/5 - Pi/10 + 3*log(2)/5. - Amiram Eldar, Apr 16 2022
E.g.f.: exp(x)*(-x + 4*x^2) + x. - Nikolaos Pantelidis, Feb 10 2023
Extensions
a(2)=6 prefixed by R. J. Mathar, Sep 29 2021
Comments