A180957 Generalized Narayana triangle for (-1)^n.
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, -2, -5, -2, 1, 1, -5, -15, -15, -5, 1, 1, -9, -30, -41, -30, -9, 1, 1, -14, -49, -77, -77, -49, -14, 1, 1, -20, -70, -112, -125, -112, -70, -20, 1, 1, -27, -90, -126, -117, -117, -126, -90, -27, 1, 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 1, 1, 1; 1, 0, 0, 1; 1, -2, -5, -2, 1; 1, -5, -15, -15, -5, 1; 1, -9, -30, -41, -30, -9, 1; 1, -14, -49, -77, -77, -49, -14, 1; 1, -20, -70, -112, -125, -112, -70, -20, 1; 1, -27, -90, -126, -117, -117, -126, -90, -27, 1; 1, -35, -105, -90, 45, 131, 45, -90, -105, -35, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A180957:= func< n,k | (&+[ (-1)^(k-j)*Binomial(n, j)*Binomial(n-j, 2*(k-j)) : j in [0..n]]) >; [A180957(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
Mathematica
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n, j]*Binomial[n-j, 2*(k-j)], {j,0,n}]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
Sage
def A180957(n,k): return sum( (-1)^(k+j)*binomial(n,j)*binomial(n-j, 2*(k-j)) for j in (0..n)) flatten([[A180957(n,k) for k in (0..n)] for n in [0..15]]) # G. C. Greubel, Apr 06 2021
Formula
G.f.: 1/(1 -x -x*y + x/(1 -x -x*y)) = (1 -x*(1+y))/(1 -2*x*(1+y) +x^2*(1 +3*y +y^2)).
E.g.f.: exp((1+y)*x) * cos(sqrt(y)*x).
T(n, k) = Sum_{j=0..n} (-1)^(k-j)*binomial(n,j)*binomial(n-j, 2*(k-j)).
Sum_{k=0..n} T(n, k) = A139011(n) (row sums).
Sum_{k=0..floor(n/2)} T(n-k, k) = A180958(n) (diagonal sums).