cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180958 Diagonal sums of generalized Narayana triangle A180957.

Original entry on oeis.org

1, 1, 2, 2, 2, -1, -8, -25, -57, -114, -202, -322, -447, -496, -271, 625, 2914, 7762, 16834, 32063, 54760, 83319, 108375, 103726, 11110, -282498, -973439, -2366432, -4869919, -8903455, -14604094, -21135454, -25294718, -19009153, 14697432, 107405319, 311830247, 705982670, 1386882198, 2436851006, 3830805953
Offset: 0

Views

Author

Paul Barry, Sep 28 2010

Keywords

Crossrefs

Cf. A180957.

Programs

  • Magma
    I:=[1,1,2,2]; [n le 4 select I[n] else 2*Self(n-1) +Self(n-2) -3*Self(n-3) -Self(n-4): n in [1..51]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    LinearRecurrence[{2,1,-3,-1}, {1,1,2,2}, 51] (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    [sum( sum( (-1)^(k-j)*binomial(n-k, j)*binomial(n-k-j, 2*(k-j)) for j in (0..n-k)) for k in (0..n//2)) for n in (0..50)] # G. C. Greubel, Apr 06 2021

Formula

G.f.: ( 1-x-x^2 ) / ( (1+x)*(1-3*x+2*x^2+x^3) ).
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} (-1)^(k-j) * binomial(n-k, j) * binomial(n-k-j, 2*(k-j)).

Extensions

Terms a(31) onward added by G. C. Greubel, Apr 06 2021