cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A180966 Hankel transform of A123164.

Original entry on oeis.org

1, 4, 28, 384, 10496, 573440, 62652416, 13690208256, 5982889443328, 5229277301702656, 9141181343655264256, 31958984107701798174720, 223467104335874481157308416, 3125102257923487167715657908224
Offset: 0

Views

Author

Paul Barry, Sep 29 2010

Keywords

Crossrefs

Programs

  • Magma
    [ 2^Binomial(n,2)*(&+[ (-1)^k*Binomial(n-k,k)*2^(2*n-3*k): k in [0..Floor(n/2)]]): n in [0..20]]; // G. C. Greubel, Apr 06 2021
    
  • Mathematica
    a[n_] := 2^Binomial[n, 2] Sum[Binomial[n-k, k] (-2)^k 4^(n-2k), {k, 0, n/2} ]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 17 2019 *)
    Table[2^(n^2/2)*ChebyshevU[n, Sqrt[2]], {n,0,20}] (* G. C. Greubel, Apr 06 2021 *)
  • Sage
    [2^(n^2/2)*chebyshev_U(n, sqrt(2)) for n in (0..20)] # G. C. Greubel, Apr 06 2021

Formula

a(n) = 2^C(n,2)*Sum_{k=0..floor(n/2)} C(n-k,k)*(-2)^k*4^(n-2*k).
a(n) = 2^C(n,2)*[x^n] (1/(1 - 4*x + 2*x^2)).
a(n) = 2^(2*n + ((n-1)*n)/2)*Hyper2F1([(1-n)/2, -n/2], [-n], 1/2) for n > 0. - Peter Luschny, Aug 02 2014
a(n) ~ 2^(n^2/2 - 1) * (1 + sqrt(2))^(n+1). - Vaclav Kotesovec, Feb 14 2021
a(n) = 2^(n^2/2)*ChebyshevU(n, sqrt(2)) = 2^(n*(n-1)/2)*A007070(n). - G. C. Greubel, Apr 06 2021