A181063 Smallest positive integer with a discrete string of exactly n consecutive divisors, or 0 if no such integer exists.
1, 2, 6, 12, 3960, 60, 420, 840, 17907120, 2520, 411863760, 27720, 68502634200, 447069823200, 360360, 720720, 7600186994400, 12252240, 9524356075634400, 81909462250455840, 1149071006394511200, 232792560, 35621201198229847200, 5354228880, 91351145008363640400
Offset: 1
Keywords
Examples
a(5) = 3960 is divisible by 8, 9, 10, 11, and 12, but not 7 or 13. It is the smallest positive integer with a string of 5 consecutive divisors that is not part of a longer string. From _Gus Wiseman_, Oct 16 2019: (Start) The sequence of terms together with their divisors begins: 1: {1} 2: {1,2} 6: {1,2,3,6} 12: {1,2,3,4,6,12} 3960: {1,2,...,8,9,10,11,12,...,1980,3960} 60: {1,2,3,4,5,6,...,30,60} 420: {1,2,3,4,5,6,7,...,210,420} 840: {1,2,3,4,5,6,7,8,...,420,840} (End)
Links
- David W. Wilson, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
tav=Table[Length/@Split[Divisors[n],#2==#1+1&],{n,10000}]; Table[Position[tav,i][[1,1]],{i,Split[Union@@tav,#2==#1+1&][[1]]}] (* Assumes there are no zeros. - Gus Wiseman, Oct 16 2019 *)
Comments