cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181120 Partial sums of round(n^2/12) (A069905).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 11, 16, 23, 31, 41, 53, 67, 83, 102, 123, 147, 174, 204, 237, 274, 314, 358, 406, 458, 514, 575, 640, 710, 785, 865, 950, 1041, 1137, 1239, 1347, 1461, 1581, 1708, 1841, 1981, 2128, 2282, 2443, 2612, 2788, 2972, 3164, 3364, 3572
Offset: 0

Views

Author

Mircea Merca, Oct 04 2010

Keywords

Comments

Number of triples of positive integers (a, b, c) such that 1 <= a <= b <= c and a + b + c <= n. - Leonhard Vogt, Apr 27 2017

Examples

			a(5) = 4 = 0 + 0 + 0 + 1 + 1 + 2.
		

Crossrefs

Partial sums of A069905.

Programs

  • Maple
    a:= n-> round(1/(72)*(2*n^(3)+3*n^(2)-6*n)): seq(a(n), n=0..50);
  • PARI
    a(n)=round(n*(2*n^2+3*n-6)/72) \\ Charles R Greathouse IV, May 23 2013

Formula

a(n) = round((2*n^3 + 3*n^2 - 6*n)/72).
a(n) = round((4*n^3 + 6*n^2 - 12*n - 7)/144).
a(n) = floor((2*n^3 + 3*n^2 - 6*n + 9)/72).
a(n) = ceiling((2*n^3 + 3*n^2 - 6*n + 9 - 16)/72).
a(n) = a(n-6) + (n^2 - 5*n + 8)/2, n > 5.
From R. J. Mathar, Oct 06 2010: (Start)
a(n) = (-1)^n/16 + n^3/36 - n^2/24 - n/12 + 7/144 - A049347(n)/9.
G.f.: x^4 / ( (1+x)*(1+x+x^2)*(x-1)^4 ). (End)
a(n) = A000601(n-3). - R. J. Mathar, Oct 11 2017