cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181124 Difference of two positive 5th powers.

Original entry on oeis.org

0, 31, 211, 242, 781, 992, 1023, 2101, 2882, 3093, 3124, 4651, 6752, 7533, 7744, 7775, 9031, 13682, 15783, 15961, 16564, 16775, 16806, 24992, 26281, 29643, 31744, 32525, 32736, 32767, 40951, 42242, 51273, 55924, 58025, 58806, 59017, 59048, 61051
Offset: 1

Views

Author

T. D. Noe, Oct 06 2010

Keywords

Comments

Because x^5-y^5 = (x-y)(x^4+x^3*y+x^2*y^2+x*y^3+y^4), the difference of two 5th powers is a prime number only if x=y+1, in which case all the primes are in A121616. The number 7744 is the first of an infinite number of squares in this sequence.

Crossrefs

Cf. A024352 (squares), A181123 (cubes), A147857 (4th powers), A181125-A181128 (6th to 9th powers)

Programs

  • Mathematica
    nn=10^9; p=5; Union[Reap[Do[n=i^p-j^p; If[n<=nn, Sow[n]], {i,Ceiling[(nn/p)^(1/(p-1))]}, {j,i}]][[2,1]]]