cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181131 Denominator of Integral_{x=0..+oo} Polylog(-n, -x)^2 for n > 0, with a(0) = 1.

Original entry on oeis.org

1, 3, 15, 105, 105, 231, 15015, 2145, 36465, 969969, 4849845, 10140585, 10140585, 22287, 3231615, 7713865005, 7713865005, 90751353, 218257003965, 1641030105, 67282234305, 368217318651, 1841086593255, 3762220429695, 63957747304815, 1546231253523
Offset: 0

Views

Author

Vladimir Reshetnikov, Jan 23 2011

Keywords

Comments

These are the denominators of the Bernoulli median numbers (see A212196). - Peter Luschny, May 04 2012

Crossrefs

Programs

  • Maple
    seq(denom(add(binomial(n,k)*bernoulli(n+k),k=0..n)), n=0..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Table[Denominator[Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]], {n, 1, 18}]
    max = 25; t[0] = Table[BernoulliB[n], {n, 0, 2*max}]; t[n_] := Differences[t[0], n]; a[n_] := t[n][[n + 1]] // Denominator; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Jul 25 2013, after Peter Luschny *)
  • PARI
    a(n)=denominator(-subst(intformal(polylog(-n,-x)^2),'x,0)) \\ Charles R Greathouse IV, Jul 21 2014
  • Sage
    # uses[BernoulliMedian_list from A212196]
    def A181131_list(n):
        return [denominator(q) for q in BernoulliMedian_list(n)]
    # Peter Luschny, May 04 2012
    

Formula

a(n) = denominator((-1)^n/Pi^(2*n)*integral((log(t/(1-t))*log(1-1/t))^n dt,t=0,1)). - [Gerry Martens, May 25 2011]
a(n) = Denominator(Sum_{k=0..n} C(n,k)*Bern(n+k)). - Vladimir Kruchinin, Apr 06 2015

Extensions

Offset set to 0, a(0) and a(19)..a(25) added by Peter Luschny, May 04 2012