A181135 a(n) = ADP(n) is the total number of aperiodic k-double-palindromes of n, where 2 <= k <= n.
0, 0, 2, 4, 12, 16, 42, 60, 112, 168, 310, 432, 756, 1106, 1722, 2640, 4080, 6062, 9198, 13860, 20300, 31062, 45034, 68340, 98208, 149940, 212576, 325080, 458724, 700128, 983010, 1501440, 2096096, 3202800, 4456074, 6800976, 9437148, 14398958, 19920474
Offset: 1
Keywords
References
- John P. McSorley: Counting k-compositions of n with palindromic and related structures. Preprint, 2010.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
PARI
a(n) = { sumdiv(n, d, moebius(n/d) * (n * if(d%2, 1, 3/2) * 2^((d-1)\2) - 2^(d\2) )) } \\ Andrew Howroyd, Sep 27 2019
Formula
Extensions
a(8) corrected and a(11) and beyond from Andrew Howroyd, Sep 27 2019
Comments