cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181143 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3*y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 85, 30, 1, 1, 55, 337, 337, 55, 1, 1, 91, 1029, 2230, 1029, 91, 1, 1, 140, 2632, 10549, 10549, 2632, 140, 1, 1, 204, 5922, 39533, 73157, 39533, 5922, 204, 1, 1, 285, 12090, 124805, 384948, 384948, 124805, 12090, 285, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 13 2010

Keywords

Comments

Compare g.f. to that of the following triangle variants:
* Pascal's: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)*y^k] * x^n/n );
* Narayana: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n );
* A181144: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n );
* A218115: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^5*y^k] * x^n/n );
* A218116: exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^6*y^k] * x^n/n ).

Examples

			G.f.: A(x,y) = 1 + (1+y)*x + (1+5*y+y^2)*x^2 + (1+14*y+14*y^2+y^3)*x^3 + (1+30*y+85*y^2+30*y^3+y^4)*x^4 +...
The logarithm of the g.f. equals the series:
log(A(x,y)) = (1 + y)*x
+ (1 + 2^3*y + y^2)*x^2/2
+ (1 + 3^3*y + 3^3*y^2 + y^3)*x^3/3
+ (1 + 4^3*y + 6^3*y^2 + 4^3*y^3 + y^4)*x^4/4
+ (1 + 5^3*y + 10^3*y^2 + 10^3*y^3 + 5^3*y^4 + y^5)*x^5/5 +...
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 14, 14, 1;
1, 30, 85, 30, 1;
1, 55, 337, 337, 55, 1;
1, 91, 1029, 2230, 1029, 91, 1;
1, 140, 2632, 10549, 10549, 2632, 140, 1;
1, 204, 5922, 39533, 73157, 39533, 5922, 204, 1;
1, 285, 12090, 124805, 384948, 384948, 124805, 12090, 285, 1;
1, 385, 22869, 345389, 1648478, 2748240, 1648478, 345389, 22869, 385, 1;
1, 506, 40678, 861080, 6016297, 15525056, 15525056, 6016297, 861080, 40678, 506, 1; ...
Note that column 1 forms the sum of squares (A000330).
Inverse binomial transform of columns begins:
[1];
[1, 4, 5, 2];
[1, 13, 58, 123, 136, 76, 17];
[1, 29, 278, 1308, 3532, 5867, 6118, 3914, 1407, 218];
[1, 54, 920, 7626, 36916, 114637, 240271, 348354, 350881, 241531, 108551, 28742, 3404]; ...
the g.f. of the rightmost coefficients of which form the g.f. exp( Sum_{n>=1} (3*n)!/(3*n!^3) * x^n/n ), and yield the self-convolution of A229452.
		

Crossrefs

Cf. A000330 (column 1), A166990 (row sums), A166896 (antidiagonal sums), A218139.
Cf. variants: A001263 (Narayana), A181144, A218115, A218116.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^3*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))