A181144 G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^4*y^k] * x^n/n ) = Sum_{n>=0,k=0..n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.
1, 1, 1, 1, 9, 1, 1, 36, 36, 1, 1, 100, 419, 100, 1, 1, 225, 2699, 2699, 225, 1, 1, 441, 12138, 35052, 12138, 441, 1, 1, 784, 42865, 286206, 286206, 42865, 784, 1, 1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1, 1, 2025, 330903, 7958563
Offset: 0
Examples
G.f.: A(x,y) = 1 + (1+y)*x + (1+9*y+y^2)*x^2 + (1+36*y+36*y^2+y^3)*x^3 + (1+100*y+419*y^2+100*y^3+y^4)*x^4 +... The logarithm of the g.f. equals the series: log(A(x,y)) = (1 + y)*x + (1 + 2^4*y + y^2)*x^2/2 + (1 + 3^4*y + 3^4*y^2 + y^3)*x^3/3 + (1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4)*x^4/4 + (1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5)*x^5/5 +... Triangle begins: 1; 1, 1; 1, 9, 1; 1, 36, 36, 1; 1, 100, 419, 100, 1; 1, 225, 2699, 2699, 225, 1; 1, 441, 12138, 35052, 12138, 441, 1; 1, 784, 42865, 286206, 286206, 42865, 784, 1; 1, 1296, 127191, 1696820, 3932898, 1696820, 127191, 1296, 1; 1, 2025, 330903, 7958563, 36955542, 36955542, 7958563, 330903, 2025, 1; 1, 3025, 776688, 31205941, 261852055, 525079969, 261852055, 31205941, 776688, 3025, 1; ... Note that column 1 forms the sum of cubes (A000537), and forms the squares of the triangular numbers. Inverse binomial transform of columns begins: [1]; [1, 8, 19, 18, 6]; [1, 35, 348, 1549, 3713, 5154, 4161, 1818, 333]; [1, 99, 2500, 27254, 161793, 589819, 1409579, 2282850, 2529900, 1893972, 917349, 259854, 32726]; ...
Crossrefs
Programs
-
PARI
{T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^4*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
Comments