cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A181145 G.f.: exp( Sum_{n>=1} [Sum_{k=0..2n} C(2n,k)^2*y^k]*x^n/n ) = Sum_{n>=0,k=0..2n} T(n,k)*x^n*y^k, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 4, 1, 1, 12, 27, 12, 1, 1, 24, 134, 236, 134, 24, 1, 1, 40, 410, 1540, 2380, 1540, 410, 40, 1, 1, 60, 975, 6260, 18386, 26216, 18386, 6260, 975, 60, 1, 1, 84, 1981, 19320, 91441, 227052, 306495, 227052, 91441, 19320, 1981, 84, 1, 1, 112, 3612, 49672
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2010

Keywords

Comments

Compare g.f. to that of the triangle A034870:
* exp( Sum_{n>=1} [Sum_{k=0..2n} C(2n,k)*y^k]*x^n/n )
which consists of the even numbered rows of Pascal's triangle.

Examples

			G.f.: A(x,y) = 1 + (1+ 4*y+ y^2)*x + (1 + 12*y+ 27*y^2+ 12*y^3+ y^4)*x^2 + (1+ 24*y+ 134*y^2+ 236*y^3+ 134*y^4+ 24*y^5+ y^6)*x^3 +...
The logarithm of the g.f. begins:
log(A(x,y)) = (1 + 2^2*y + y^2)*x
+ (1 + 4^2*y + 6^2*y^2 + 4^2*y^3 + y^4)*x^2/2
+ (1 + 6^2*y + 15^2*y^2 + 20^2*y^3 + 15^2*y^4 + 6^2*y^5 + y^6)*x^3/3
+ (1 + 8^2*y + 28^2*y^2 + 56^2*y^3 + 70^2*y^4 + 56^2*y^5 + 28^2*y^6 + 8^2*y^7 + y^8)*x^4/4 +...
Triangle begins:
1;
1, 4, 1;
1, 12, 27, 12, 1;
1, 24, 134, 236, 134, 24, 1;
1, 40, 410, 1540, 2380, 1540, 410, 40, 1;
1, 60, 975, 6260, 18386, 26216, 18386, 6260, 975, 60, 1;
1, 84, 1981, 19320, 91441, 227052, 306495, 227052, 91441, 19320, 1981, 84, 1;
1, 112, 3612, 49672, 344260, 1312080, 2883562, 3740572, 2883562, 1312080, 344260, 49672, 3612, 112, 1; ...
		

Crossrefs

Cf. A066357 (row sums), A181146 (main diagonal).
Cf. variants: A181143, A181144, A001263, A034870.

Programs

  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,2*m,binomial(2*m,j)^2*y^j)*x^m/m)+O(x^(n+1))),n,x),k,y)}

Formula

Row sums form A066357 (with offset), the number of ordered trees on 2n nodes with every subtree at the root having an even number of edges.

Extensions

Comment and example corrected by Paul D. Hanna, Oct 16 2010
Showing 1-1 of 1 results.