cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181152 Decimal expansion of Madelung constant (negated) for the CsCl structure.

Original entry on oeis.org

1, 7, 6, 2, 6, 7, 4, 7, 7, 3, 0, 7, 0, 9, 8, 8, 3, 9, 7, 9, 3, 5, 6, 7, 3, 3, 2, 0, 6, 3, 8, 6, 4, 4, 2, 9, 1, 1, 7, 0, 5, 2, 8, 6, 1, 9, 5, 8, 8, 5, 8, 5, 2, 8, 0, 6, 4, 9, 4, 1, 8, 4, 3, 7, 7, 2, 7, 9, 6, 6, 2, 2, 3, 7, 6, 9, 3, 4, 0, 8, 3, 0, 4, 7, 1, 5, 0, 9, 4, 5, 8, 1, 1, 2, 1, 6, 9, 8, 8, 9, 0, 8, 5, 6, 9
Offset: 1

Views

Author

Leslie Glasser, Jan 24 2011

Keywords

Comments

This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - R. J. Mathar, Jan 28 2011
The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - Andrey Zabolotskiy, Oct 21 2019

Crossrefs

Programs

  • Mathematica
    digits = 105;
    m0 = 50; (* initial number of terms *)
    dm = 10; (* number of terms increment *)
    dd = 10; (* precision excess *)
    Clear[f];
    f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
    f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
    f[m = m0];
    f[m += dm];
    While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
    A185577 = f[m];
    Clear[g];
    g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
    g[m = m0];
    g[m += dm];
    While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
    A085469 = g[m];
    A181152 = Sqrt[3] (A085469 - 3 A185577)/4;
    RealDigits[A181152, 10, digits][[1]] (* Jean-François Alcover, May 07 2021 *)

Extensions

More terms (using the above comment from R. J. Mathar and terms from the b-files for A085469 and A185577) from Jon E. Schoenfield, Mar 10 2018
Definition corrected by Andrey Zabolotskiy, Oct 21 2019
a(88)-a(105) from Jean-François Alcover, May 07 2021