A181153 Number of connected 7-regular simple graphs on 2n vertices with girth at least 4.
1, 0, 0, 0, 0, 0, 0, 1, 1, 8, 741, 2887493
Offset: 0
Examples
The a(0)=1 null graph is vacuously 7-regular and connected; since it is acyclic then it has infinite girth. The a(7)=1 graph is the complete bipartite graph K_{7,7} on 14 vertices. The a(8)=1 graph has girth 4, automorphism group of order 80640, and the following adjacency lists: 01 : 02 03 04 05 06 07 08 02 : 01 09 10 11 12 13 14 03 : 01 09 10 11 12 13 15 04 : 01 09 10 11 12 14 15 05 : 01 09 10 11 13 14 15 06 : 01 09 10 12 13 14 15 07 : 01 09 11 12 13 14 15 08 : 01 10 11 12 13 14 15 09 : 02 03 04 05 06 07 16 10 : 02 03 04 05 06 08 16 11 : 02 03 04 05 07 08 16 12 : 02 03 04 06 07 08 16 13 : 02 03 05 06 07 08 16 14 : 02 04 05 06 07 08 16 15 : 03 04 05 06 07 08 16 16 : 09 10 11 12 13 14 15
References
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
Links
- Jason Kimberley, Connected regular graphs with girth at least 4
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
Crossrefs
7-regular simple graphs with girth at least 4: this sequence (connected), A185274 (disconnected), A185374 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), this sequence (k=7), A181154 (k=8), A181170 (k=9).
Connected 7-regular simple graphs with girth at least g: A014377 (g=3), this sequence (g=4).
Comments