A181154 Number of connected 8-regular simple graphs on n vertices with girth at least 4.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 1
Offset: 0
Examples
The a( 0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth. The a(16)=1 graph is the complete bipartite graph K_{8,8}. The a(21)=1 graph has girth 4, automorphism group of order 829440, and the following adjacency lists: 01 : 02 03 04 05 06 07 08 09 02 : 01 10 11 12 13 14 15 16 03 : 01 10 11 12 13 14 15 16 04 : 01 10 11 12 13 14 15 16 05 : 01 10 11 12 13 14 15 16 06 : 01 10 11 12 17 18 19 20 07 : 01 10 11 13 17 18 19 20 08 : 01 10 12 13 17 18 19 20 09 : 01 11 12 13 17 18 19 20 10 : 02 03 04 05 06 07 08 21 11 : 02 03 04 05 06 07 09 21 12 : 02 03 04 05 06 08 09 21 13 : 02 03 04 05 07 08 09 21 14 : 02 03 04 05 17 18 19 20 15 : 02 03 04 05 17 18 19 20 16 : 02 03 04 05 17 18 19 20 17 : 06 07 08 09 14 15 16 21 18 : 06 07 08 09 14 15 16 21 19 : 06 07 08 09 14 15 16 21 20 : 06 07 08 09 14 15 16 21 21 : 10 11 12 13 17 18 19 20
References
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
Links
- Jason Kimberley, Connected regular graphs with girth at least 4
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
Crossrefs
8-regular simple graphs with girth at least 4: this sequence (connected), A185284 (disconnected), A185384 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), this sequence (k=8), A181170 (k=9).
Comments