cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181208 Number of n X 4 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

16, 64, 484, 2704, 17424, 104976, 652864, 4000000, 24681024, 151782400, 934891776, 5754132736, 35428274176, 218096472064, 1342706197504, 8266039005184, 50888705511424, 313286601609216, 1928696564957184, 11873676328960000
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 4 of A181212.

Crossrefs

Cf. A181212.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=6*a(n-1)+8*a(n-2)-48*a(n-3)+24*a(n-4)+32*a(n-5)-16*a(n-6), a(1)=16, a(2)=64, a(3)=484, a(4)=2704, a(5)=17424, a(6)=104976},a(n),remember):
    map(f, [$1..20]); # Robert Israel, Dec 25 2017
  • Mathematica
    RecurrenceTable[{a[n] == 6*a[n-1] + 8*a[n-2] - 48*a[n-3] + 24*a[n-4] + 32*a[n-5] - 16*a[n-6], a[1] == 16, a[2] == 64, a[3] == 484, a[4] == 2704, a[5] == 17424, a[6] == 104976}, a, {n, 1, 20}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *)
    LinearRecurrence[{6,8,-48,24,32,-16},{16,64,484,2704,17424,104976},30] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    Vec(4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)) + O(x^30)) \\ Colin Barker, Mar 26 2018

Formula

Empirical: a(n) = 6*a(n-1) + 8*a(n-2) - 48*a(n-3) + 24*a(n-4) + 32*a(n-5) - 16*a(n-6).
Formula confirmed by Robert Israel, Dec 25 2017 (see link).
G.f.: 4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)). - Colin Barker, Mar 26 2018