A181208 Number of n X 4 binary matrices with no two 1's adjacent diagonally or antidiagonally.
16, 64, 484, 2704, 17424, 104976, 652864, 4000000, 24681024, 151782400, 934891776, 5754132736, 35428274176, 218096472064, 1342706197504, 8266039005184, 50888705511424, 313286601609216, 1928696564957184, 11873676328960000
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..1265 (n = 1..325 from R. H. Hardin)
- Robert Israel, Maple-assisted proof of formula
- Index entries for linear recurrences with constant coefficients, signature (6,8,-48,24,32,-16).
Crossrefs
Cf. A181212.
Programs
-
Maple
f:= gfun:-rectoproc({a(n)=6*a(n-1)+8*a(n-2)-48*a(n-3)+24*a(n-4)+32*a(n-5)-16*a(n-6), a(1)=16, a(2)=64, a(3)=484, a(4)=2704, a(5)=17424, a(6)=104976},a(n),remember): map(f, [$1..20]); # Robert Israel, Dec 25 2017
-
Mathematica
RecurrenceTable[{a[n] == 6*a[n-1] + 8*a[n-2] - 48*a[n-3] + 24*a[n-4] + 32*a[n-5] - 16*a[n-6], a[1] == 16, a[2] == 64, a[3] == 484, a[4] == 2704, a[5] == 17424, a[6] == 104976}, a, {n, 1, 20}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *) LinearRecurrence[{6,8,-48,24,32,-16},{16,64,484,2704,17424,104976},30] (* Harvey P. Dale, Aug 29 2024 *)
-
PARI
Vec(4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)) + O(x^30)) \\ Colin Barker, Mar 26 2018
Formula
Empirical: a(n) = 6*a(n-1) + 8*a(n-2) - 48*a(n-3) + 24*a(n-4) + 32*a(n-5) - 16*a(n-6).
Formula confirmed by Robert Israel, Dec 25 2017 (see link).
G.f.: 4*x*(4 - 8*x - 7*x^2 + 14*x^3 + 4*x^4 - 4*x^5) / ((1 - 8*x + 12*x^2 - 4*x^3)*(1 + 2*x - 4*x^2 - 4*x^3)). - Colin Barker, Mar 26 2018
Comments