A181237 Number of (3n) X 3 binary matrices with all row sums equal and all column sums equal.
14, 182, 3362, 69302, 1513514, 34306274, 798145922, 18931023542, 455746863002, 11101993582682, 273053990926082, 6769463525042402, 168956196145732802, 4241145331821456002, 106989959570749263362, 2710690928812030164662
Offset: 1
Keywords
Examples
All solutions for 3 X 3: ..0..0..0....0..0..1....0..0..1....0..1..0....0..1..0....0..1..1....0..1..1 ..0..0..0....0..1..0....1..0..0....0..0..1....1..0..0....1..0..1....1..1..0 ..0..0..0....1..0..0....0..1..0....1..0..0....0..0..1....1..1..0....1..0..1 ... ..1..0..0....1..0..0....1..0..1....1..0..1....1..1..0....1..1..0....1..1..1 ..0..0..1....0..1..0....0..1..1....1..1..0....0..1..1....1..0..1....1..1..1 ..0..1..0....0..0..1....1..1..0....0..1..1....1..0..1....0..1..1....1..1..1
Links
- Robert Israel, Table of n, a(n) for n = 1..630 (first 112 terms from R. H. Hardin)
Crossrefs
Cf. A181236.
Programs
-
Magma
[2*(1+Factorial(3*n)/Factorial(n)^3): n in [1..20]]; // Vincenzo Librandi, Oct 30 2014
-
Maple
seq(2 * (1 + (3*n)!/(n!)^3), n = 1 .. 20); # Robert Israel, Oct 30 2014
-
Mathematica
Table[2 (1 + (3 n)! / (n!)^3), {n, 20}] (* Vincenzo Librandi, Oct 30 2014 *)
Formula
From Robert Israel, Oct 30 2014: (Start)
a(n) = 2 * (1 + (3*n)!/(n!)^3).
a(n+1) = (3*(3*n+2)*(3*n+1)*a(n) - 52*n^2 - 50*n - 10)/(n+1)^2. (End)
Comments