A181281 A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer 4 places clockwise from i. Repeat, counting 4 places from the next undeleted integer, until only one integer remains.
1, 2, 1, 2, 2, 1, 6, 3, 8, 3, 8, 1, 6, 11, 1, 6, 11, 16, 2, 7, 12, 17, 22, 3, 8, 13, 18, 23, 28, 3, 8, 13, 18, 23, 28, 33, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 3, 8, 13, 18, 23, 28, 33, 38
Offset: 1
Keywords
Examples
a(7) = 6: (^1,2,3,4,5,6,7) -> (1,2,3,4,^6,7) -> (1,2,^4,6,7) -> (1,^4,6,7) -> (1,^6,7) -> (^1,6) -> (^6). a(14) = 11 => a(15) = (a(14)+4) mod 15 + 1 = 1.
References
- Paul Weisenhorn, Josephus und seine Folgen, MNU Journal (Der mathematische und naturwissenschaftliche Unterricht), 59 (2006), 18-19.
Programs
-
Maple
a:= proc(n) option remember; `if` (n=1, 1, (a(n-1)+4) mod n +1) end: seq (a(n), n=1..100);
-
Mathematica
a[1] = 1; a[n_] := a[n] = Mod[a[n-1]+4, n]+1; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Oct 18 2013 *)
Formula
a(n) = (a(n-1) + 4) mod n + 1 if n>1, a(1) = 1.
Extensions
Edited by Alois P. Heinz, Sep 06 2011