A181299 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns in which the top entry is equal to the bottom entry (0<=k<=floor(n/2)).
1, 2, 6, 1, 20, 4, 64, 17, 1, 206, 68, 6, 662, 261, 32, 1, 2128, 976, 152, 8, 6840, 3577, 675, 51, 1, 21986, 12912, 2860, 280, 10, 70670, 46049, 11704, 1406, 74, 1, 227156, 162628, 46632, 6632, 460, 12, 730152, 569705, 181877, 29866, 2570, 101, 1, 2346942
Offset: 0
Examples
T(3,1) = 4 because we have (1,1/1,0), (1,0/1,1), (1,1/0,1), (0,1/1,1) (the 2-compositions are written as (top row/bottom row)). Triangle starts: 1; 2; 6,1; 20,4; 64,17,1;
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo, and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
G := (1-z)^2*(1+z)/(1-3*z-z^2+z^3-t*z^2*(1-z)): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Comments