cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181301 Number of 2-compositions of n having no column with equal entries. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 2, 6, 20, 64, 206, 662, 2128, 6840, 21986, 70670, 227156, 730152, 2346942, 7543822, 24248256, 77941648, 250529378, 805281526, 2588432308, 8320049072, 26743297998, 85961510758, 276307781200, 888141556360, 2854770939522
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

a(n)=A181299(n,0).

References

  • G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.

Crossrefs

Cf. A181299.

Programs

  • Maple
    g := (1+z)*(1-z)^2/(1-3*z-z^2+z^3): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 27);

Formula

G.f. = (1+z)(1-z)^2/(1-3z-z^2+z^3).
a(n) = Sum_{k, 0<=k<=n} A060086(n,k)*2^k. - Philippe Deléham, Feb 24 2012
a(n) = 2*A033505(n-1), n>0. - R. J. Mathar, Jul 24 2022

A181300 Number of columns with top entry equal to bottom entry in all the 2-compositions of n. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

0, 0, 1, 4, 19, 80, 328, 1304, 5084, 19512, 73976, 277688, 1033848, 3822584, 14050824, 51385720, 187095240, 678570360, 2452626312, 8837584248, 31756892552, 113831195000, 407102551688, 1452956457336, 5175872174728
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

a(n)=Sum(k*A181299(n,k),k>=0).

References

  • G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.

Crossrefs

Programs

  • Maple
    g := z^2*(1-z)^3/((1+z)*(1-4*z+2*z^2)^2): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 27);
  • Mathematica
    LinearRecurrence[{7,-12,-4,12,-4},{0,0,1,4,19,80},30] (* Harvey P. Dale, Apr 05 2023 *)

Formula

G.f. = z^2*(1-z)^3/[(1+z)(1-4z+2z^2)^2].
Showing 1-2 of 2 results.