cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060086 Convolution triangle A059594 with extra first column.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 3, 14, 19, 14, 5, 1, 0, 4, 20, 39, 36, 20, 6, 1, 0, 4, 30, 69, 85, 60, 27, 7, 1, 0, 5, 40, 119, 176, 160, 92, 35, 8, 1, 0, 5, 55, 189, 344, 376, 273, 133, 44, 9
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2001

Keywords

Comments

Riordan array (1, x/((1+x)*(1-x)^2)). - Philippe Deléham, Feb 24 2012
Triangle, read by rows, given by (0, 1, 1, -2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 24 2012

Examples

			{1}; {0,1}; {0,1,1}; {0,2,2,1}; ...
Triangle begins :
1
0, 1
0, 1, 1
0, 2, 2, 1
0, 2, 5, 3, 1
0, 3, 8, 9, 4, 1
0, 3, 14, 19, 14, 5, 1
		

Crossrefs

Cf. A059594,

Programs

  • Mathematica
    t[0, 0] = 1; t[, 0] = 0; t[n, m_] := Sum[ Sum[ Binomial[j, 2*j-3*k-m+n]*(-1)^(j-k)*Binomial[k, j], {j, 0, k}]*Binomial[m+k-1, m-1], {k, 0, n-m}]; Table[t[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)

Formula

G.f.for column m >= 0: (x/((1-x^2)*(1-x)))^m.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k) - T(n-3,k) with T(n,0) = 0^n. - Philippe Deléham, Feb 24 2012
G.f.: (1-x-x^2+x^3)/(1-x-x^2+x^3-y*x). - Philippe Deléham, Feb 24 2012
Sum_{k, 0<=k<=n} T(n,k)*2^k = A181301(n). - Philippe Deléham, Feb 24 2012

A181299 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns in which the top entry is equal to the bottom entry (0<=k<=floor(n/2)).

Original entry on oeis.org

1, 2, 6, 1, 20, 4, 64, 17, 1, 206, 68, 6, 662, 261, 32, 1, 2128, 976, 152, 8, 6840, 3577, 675, 51, 1, 21986, 12912, 2860, 280, 10, 70670, 46049, 11704, 1406, 74, 1, 227156, 162628, 46632, 6632, 460, 12, 730152, 569705, 181877, 29866, 2570, 101, 1, 2346942
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
Row n contains 1+floor(n/2) entries.

Examples

			T(3,1) = 4 because we have (1,1/1,0), (1,0/1,1), (1,1/0,1), (0,1/1,1) (the 2-compositions are written as (top row/bottom row)).
Triangle starts:
  1;
  2;
  6,1;
  20,4;
  64,17,1;
		

Crossrefs

Programs

  • Maple
    G := (1-z)^2*(1+z)/(1-3*z-z^2+z^3-t*z^2*(1-z)): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (1+z)*(1-z)^2/(1-3*z-z^2+z^3-t*(1-z)*z^2).
Sum_{k>=0} T(n,k) = A003480(n).
T(n,0) = A181301(n).
Sum_{k>=0} k*T(n,k) = A181300(n).
Showing 1-2 of 2 results.